

SN8PC13

USER'S MANUAL

Version 0.5

SONIX 8-Bit Micro-Controller

SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
VER 0.1	Sep. 2005	1. First issue
	Nov.2005	1. ADD Brown-Out reset circuit.
VER 0.2	Dec 2005	1. Modify Topr value.
		2. Modify SN8PC13_V02 Brown-Out Reset description
		3. Remove power consumption(Pc)
		4. Modify M2IDE 1.07.
		5. Modify ELECTRICAL CHARACTERISTIC.
VER 0.3	Jan 2006	1. Remove P5.4.
		2. Modify IR output description. IROUT pin is low status when IROUT=0 or the system
		is in power down.
VER 0.4	May 2006	1. Modify working voltage range to LVD~5.5V.
VER 0.5	Nov. 2006	Add Marking Definition.

Table of Content

F	AMENDMENT HISTORY	2
1	PRODUCT OVERVIEW	6
1	1.1 FEATURES	6
1	1.2 SYSTEM BLOCK DIAGRAM	
1	1.3 PIN ASSIGNMENT	7
1	1.4 PIN DESCRIPTIONS	8
1	1.5 PIN CIRCUIT DIAGRAMS	9
2	CENTRAL PROCESSOR UNIT (CPU)	10
2	2.1 MEMORY MAP	10
	2.1.1 PROGRAM MEMORY (ROM)	
	2.1.1.1 RESET VECTOR (0000H)	11
	2.1.1.2 CHECKSUM CALCULATION	
	2.1.2 CODE OPTION TABLE	
	2.1.3 DATA MEMORY (RAM)	
	2.1.4 SYSTEM REGISTER	
	2.1.4.1 SYSTEM REGISTER TABLE	
	2.1.4.2 SYSTEM REGISTER DESCRIPTION	
	2.1.4.3 BIT DEFINITION of SYSTEM REGISTER	
	2.1.4.4 ACCUMULATOR	
	2.1.4.5 PROGRAM FLAG	
	2.1.4.6 PROGRAM COUNTER	
	2.1.4.7 Y, Z REGISTERS	20
	2.1.4.8 R REGISTERS	
2	2.2 ADDRESSING MODE	22
	2.2.1 IMMEDIATE ADDRESSING MODE	
	2.2.2 DIRECTLY ADDRESSING MODE	
	2.2.3 INDIRECTLY ADDRESSING MODE	
2	2.3 STACK OPERATION	
	2.3.1 OVERVIEW	
	2.3.2 STACK REGISTERS	
	2.3.3 STACK OPERATION EXAMPLE	
3	RESET	26
3	3.1 OVERVIEW	26
3	3.2 POWER ON RESET	
3	3.3 WATCHDOG RESET	27

	3.4	BR	ROWN OUT RESET	28
	3.4	4.1	BROWN OUT DESCRIPTION	28
	3.4	4.2	THE SYSTEM OPERATING VOLTAGE DECSRIPTION	29
	3.4	4.3	BROWN OUT RESET IMPROVEMENT	29
	3.5	EX	TERNAL RESET	31
	3.6	EX	TERNAL RESET CIRCUIT	31
	3.6	5.1	Simply RC Reset Circuit	31
	3.6	5.2	Diode & RC Reset Circuit	32
	3.6	5.3	Zener Diode Reset Circuit	
	3.6	5.4	Voltage Bias Reset Circuit	33
	3.6	5.5	External Reset IC	
4	SY	STE	M CLOCK	35
	4.1	VO	VERVIEW	35
	4.2	CL	OCK BLOCK DIAGRAM	
	4.3	OS	SCM REGISTER	36
	4.4	SY	STEM HIGH CLOCK	36
5	SY	STE	M OPERATION MODE	37
	5.1	OV	VERVIEW	37
	5.2	SY	STEM MODE SWITCHING	37
	5.3		AKEUP	
	5.3	3.1	OVERVIEW	
	5.3	3.2	WAKEUP TIME	
6	I /0	O PO	RT	39
	6.1	I/C	PORT MODE	39
	6.2	I/C	PORT DATA REGISTER	40
7	TI	MEF	RS	41
	7.1	W	ATCHDOG TIMER	41
	7.2	TI	MER 0 (T0)	43
	7.2	2.1	OVERVIEW	43
	7.2	2.2	TOM MODE REGISTER	
	7.2	2.3	TOC COUNTING REGISTER	44
	7.2	2.4	TO TIMER OPERATION SEQUENCE	
8	IR	OU	ГРUТ	
	8.1	O	VERVIEW	46
	8.2	IR	CONTROL REGISTER	47
	8.2	2.1	TCOM MODE REGISTER	47

8.2	.2 TCOC COUNTING REGISTER	47
8.2	.3 TCOR AUTO-LOAD REGISTER	48
8.2	.4 TC0D IR DUTY CONTROL REGISTER	49
8.2	.5 IR OUTPUT OPERATION SEQUENCE	50
8.3	IR REMOTE CONTROLLER APPLICATION CIRCUIT	51
9 IN	STRUCTION TABLE	52
10	ELECTRICAL CHARACTERISTIC	53
10.1	ABSOLUTE MAXIMUM RATING	53
10.2	ELECTRICAL CHARACTERISTIC	53
11	DEVELOPMENT TOOL	54
12	OTP PROGRAMMING PIN	55
12.1	THE PIN ASSIGNMENT OF EASY WRITER TRANSITION BOARD SOCKET:	55
12.2	Programming Pin Mapping:	56
13	PACKAGE INFORMATION	57
13.1	P-DIP 20 PIN	57
13.2	SOP 20 PIN	58
13.3	SSOP 20 PIN	59
14	MARKING DEFINITION	60
14.1	INTRODUCTION	60
14.2	MARKING INDETIFICATION SYSTEM	60
14.3	Marking Example	61
14.4	DATECODE SYSTEM	61

1 PRODUCT OVERVIEW

1.1 FEATURES

Memory configuration
 OTP ROM size: 2K * 16 bits.

 RAM size: 48 * 8 bits.

♦ Four levels stack buffer

♦ I/O pin configuration

Bi-directional: P1, P0.6, P0.7 Input only: P0.0~P0.4 IR output: IROUT

Wakeup: P0, P1 level change trigger.

Pull-up resisters: P0, P1

Powerful instructions
 Four clocks per instruction cycle (4T)
 Most of instructions are one cycle only.

All ROM area JMP instruction.
All ROM area CALL address instruction.

All ROM area lookup table function (MOVC)

♦ Two 8-bit Timer/Counter

T0: Basic timer TC0: For IR output

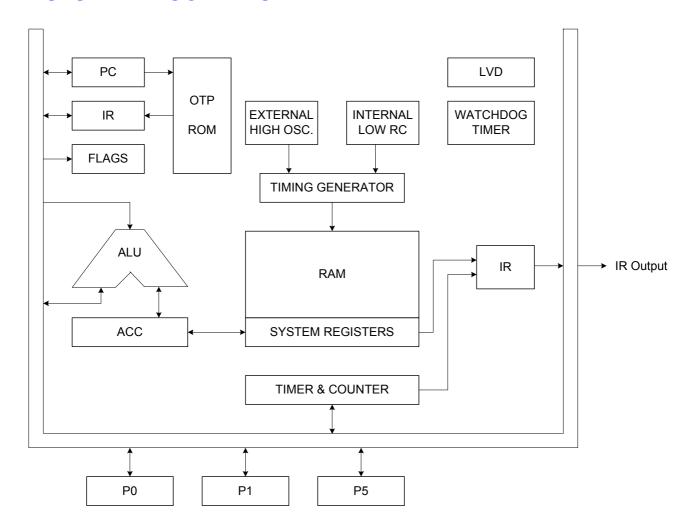
- ♦ One channel IR output.
- On chip watchdog timer and clock source is internal low clock RC type (16KHz @3V, 32KHz @5V).
- Single system clocks

External high clock: 4 MHz crystal/resonator

♦ Operating modes

Normal mode: Both high and low clock active Sleep mode: Both high and low clock stop

♦ Package (Chip form support)


PDIP 20 pins SOP 20 pins SSOP 20 pins

Features Selection Table

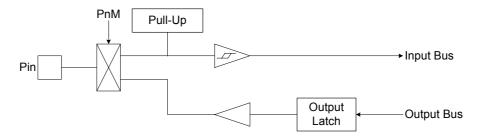
CHIP	ROM	RAM	Stack	ТО	Osc.	I/O	IR Output	Wakeup Pin No.	Package	
SN8PC01	0.5K*16	32	4	-	455KHz	16	Fix 38KHz	9	DIP20/SOP20	
SN8PC13	2K*16	48	4	V	4MHz	16	Duty, cycle programmable	15	DIP20/SOP20/SSOP20	

1.2 SYSTEM BLOCK DIAGRAM

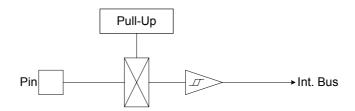
1.3 PIN ASSIGNMENT

SN8PC13P (P-DIP 20 pins) SN8PC13S (SOP 20 pins) SN8PC13X (SSOP 20 pins)

-				_
P1.6	1	U	20	P1.5
P1.7	2		19	P1.4
P0.7	3		18	P1.3
P0.6	4		17	P1.2
IROUT	5		16	P1.1
VDD	6		15	P1.0
XOUT	7		14	P0.3
XIN	8		13	P0.2
VSS	9		12	P0.1
P0.4/RST/VPP	10		11	P0.0
•	SN	I8PC13	3P	•
	SN	N8PC13	3S	
	SN	I8PC13	3X	

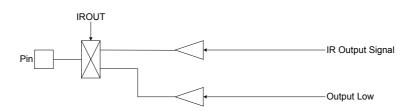

1.4 PIN DESCRIPTIONS

PIN NAME	TYPE	DESCRIPTION
VDD, VSS	Р	Power supply input pins for digital circuit.
XIN		XIN: Oscillator input pin.
XOUT	0	XOUT: Oscillator output pin.
P1.0	I/O	P1.0: Port 1.0 bi-direction pin. Schmitt trigger structure. Built-in pull-up resistors as input mode. Build-in wake-up function by edge trigger.
P1.1	I/O	P1.1: Port 1.1 bi-direction pin. Schmitt trigger structure. Built-in pull-up resistors as input mode. Build-in wake-up function by edge trigger.
P1 [7:2]	I/O	P1: Port 1 bi-direction pin. Schmitt trigger structure. Built-in pull-up resistors as input mode. Build-in wake-up function by edge trigger.
P0 [3:0]	I	P0.0~P0.3: Port 0 input-only pin. Schmitt trigger structure. Built-in pull-up resistors. Build-in wake-up function by edge trigger.
P0.4/RST/VPP	I, P	RST is system external reset input pin under Ext_RST mode. Schmitt trigger structure, active "low", normal stay to "high". P0.4 is input only pin without pull-up resistor under P0.4 mode. Add the 100 ohm external resistor on P1.4,when it is set to be input pin. Build-in wake-up function by edge trigger. OTP 12.3V power input pin in programming mode.
P0 [7:6]	1/0	P0[7:6]: Port 0 bi-direction pin. Schmitt trigger structure. Built-in pull-up resistors as input mode. Build-in wake-up function by edge trigger.
IROUT	0	IROUT: IR output pin.



1.5 PIN CIRCUIT DIAGRAMS


Port 1, P0.6, P0.7 structure:


Port 0.0~0.3 structure:

Port 0.4 structure:

IROUT structure:

2 CENTRAL PROCESSOR UNIT (CPU)

2.1 MEMORY MAP

2.1.1 PROGRAM MEMORY (ROM)

2K words ROM

	IXOIII	_
0000H	Reset vector	User reset vector Jump to user start address
0001H	0	
0007H	General purpose area	
0008H		User program
000FH 0010H 0011H	General purpose area	
07FCH 07FDH		End of user program
07FEH 07FFH	Reserved	

ROM

2.1.1.1 RESET VECTOR (0000H)

A one-word vector address area is used to execute system reset.

- Power On Reset
- Watchdog Rese
- External Reset

After power on reset, external reset or watchdog timer overflow reset, then the chip will restart the program from address 0000h and all system registers will be set as default values. The following example shows the way to define the reset vector in the program memory.

Example: Defining Reset Vector

ORG 0 ; 0000H

JMP START ; Jump to user program address.

. . .

ORG 10H

START: ; 0010H, The head of user program.

... ; User program

• • •

ENDP ; End of program

2.1.1.2 CHECKSUM CALCULATION

The last ROM address are reserved area. User should avoid these addresses (last address) when calculate the Checksum value.

Example: The demo program shows how to calculated Checksum from 00H to the end of user's code.

@@·	MOV MOV MOV MOV MOV MOV	A,#END_USER_CODE\$L END_ADDR1, A A,#END_USER_CODE\$M END_ADDR2, A A, #0 Y, A Z, A	; Save low end address to end_addr1 ; Save middle end address to end_addr2 ; Set Y to 00H ; Set Z to 00H
@@: AAA:	MOVC BCLR ADC MOV ADC JMP	FC DATA1, A A, R DATA2, A END_CHECK	; Clear C flag ; Add A to Data1 ; Add R to Data2 ; Check if the YZ address = the end of code
END CHECK:	INCMS JMP JMP	Z @B Y_ADD_1	; Z=Z+1 ; If Z != 00H calculate to next address ; If Z = 00H increase Y
END_CHECK.	MOV CMPRS JMP MOV CMPRS JMP JMP	A, END_ADDR1 A, Z AAA A, END_ADDR2 A, Y AAA CHECKSUM_END	; Check if Z = low end address ; If Not jump to checksum calculate ; If Yes, check if Y = middle end address ; If Not jump to checksum calculate ; If Yes checksum calculated is done.
Y_ADD_1:	INCMS NOP	Υ	; Increase Y
CHECKSUM_END:	JMP 	@B	; Jump to checksum calculate
END_USER_CODE:	···		; Label of program end

2.1.2 CODE OPTION TABLE

Code Option	Content	Function Description
	Always_On	Watchdog timer is always on enable even in power down and green mode.
Watch_Dog	Enable	Enable watchdog timer. Watchdog timer stops in power down mode and green mode.
	Disable	Disable Watchdog function.
Reset Pin	Reset	Enable External reset pin.
Keset_Fill	green mode. Disable Disable Watchdog function. Reset Enable External reset pin. P04 Enable P0.4 input only without pull-up resister.	
Security	Enable	Enable ROM code Security function.
Security	Disable	Watchdog timer is always on enable even in power down and green mode. Enable watchdog timer. Watchdog timer stops in power down mode and green mode. Disable Watchdog function. Enable External reset pin. Enable P0.4 input only without pull-up resister.

2.1.3 DATA MEMORY (RAM)

☞ 48 X 8-bit RAM

	Address	RAM location	
	000h "		
	"		
	"	General purpose area	
	"		
BANK 0	02Fh		
DANKU	080h "		80h~FFh of Bank 0 store system
	"		registers (128 bytes).
	"	System register	
	"		
	0FFh	End of bank 0 area	

2.1.4 SYSTEM REGISTER

2.1.4.1 **SYSTEM REGISTER TABLE**

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
8	-	-	R	Z	Y	-	PFLAG	-	-	-	-	-	-	-	-	-
9	-	-	-	•	-	-	-	-	1	-	-	-	-	-	1	-
Α	-	1	1	-	-	-	-	1	-	-	1	-	-	-	-	-
В	-	ı	ı	-	-	1	-	1	P0M	-	1	-	-	-	ı	-
С	-	P1M	ı	-	-	1	-	1	INTRQ	-	OSCM	-	WDTR	TC0R	PCL	PCH
D	P0	P1	-	-	-	-	-	-	TOM	T0C	TC0M	TC0C	-	-	-	STKP
Е	-	-	-	-	-	-	-	@YZ	TC0D	-	-	-	-	-	-	-
F	-	-	-	-	-	-	-	-	STK3L	STK3H	STK2L	STK2H	STK1L	STK1H	STK0L	STK0H

SYSTEM REGISTER DESCRIPTION 2.1.4.2

PFLAG = ROM page and special flag register.

@YZ = RAM YZ indirect addressing index pointer.

PnM = Port n input/output mode register.

INTRQ = T0 overflow flag register.

OSCM = Oscillator mode register.

T0M = T0 mode register. TC0M = TC0 mode register.

TC0R = TC0 auto-reload data buffer.

TC0D = IR output duty register.

STKP = Stack pointer buffer.

R = Working register and ROM look-up data buffer.

Y, Z = Working, @YZ and ROM addressing register.

Pn = Port n data buffer.

PnUR = Port n pull-up resister control register.

PCH, PCL = Program counter.

TOC = TC0 counting register.
TC0C = TC0 counting register.

WDTR = Watchdog timer clear register.

STK0~STK3 = Stack 0 ~ stack 3 buffer.

2.1.4.3 **BIT DEFINITION of SYSTEM REGISTER**

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Remarks
082H	RBIT7	RBIT6	RBIT5	RBIT4	RBIT3	RBIT2	RBIT1	RBIT0	R/W	R
083H	ZBIT7	ZBIT6	ZBIT5	ZBIT4	ZBIT3	ZBIT2	ZBIT1	ZBIT0	R/W	Z
084H	YBIT7	YBIT6	YBIT5	YBIT4	YBIT3	YBIT2	YBIT1	YBIT0	R/W	Υ
086H	-	-	-	-	-	С		Z	R/W	PFLAG
0B8H	P07M	P06M	-	-	-	-	-	-	R/W	P0M
0C1H	P17M	P16M	P15M	P14M	P13M	P12M	P11M	P10M	R/W	P1M I/O direction
0C8H	-	-	-	T0IRQ	-	-	-	-	R/W	INTRQ
0CAH	0	0	0	CPUM1	CPUM0	0	0	0	R/W	OSCM
0CCH	WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	WDTR0	W	WDTR
0CDH	TC0R7	TC0R6	TC0R5	TC0R4	TC0R3	TC0R2	TC0R1	TC0R0	W	TC0R
0CEH	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	R/W	PCL
0CFH	-	-	-	-	-	PC10	PC9	PC8	R/W	PCH
0D0H	P07	P06	-	P04	P03	P02	P01	P00	R/W	P0 data buffer
0D1H	P17	P16	P15	P14	P13	P12	P11	P10	R/W	P1 data buffer
0D8H	T0ENB	T0rate2	T0rate1	T0rate0	-	-	-	-	R/W	TOM
0D9H	T0C7	T0C6	T0C5	T0C4	T0C3	T0C2	T0C1	T0C0	R/W	T0C
0DAH	-	-	-	-	-	-	-	IR0OUT	R/W	TC0M
0DBH	TC0C7	TC0C6	TC0C5	TC0C4	TC0C3	TC0C2	TC0C1	TC0C0	R/W	TC0C
0DFH	-	-	-	-	-	-	STKPB1	STKPB0	R/W	STKP stack pointer
0E7H	@YZ7	@YZ6	@YZ5	@YZ4	@YZ3	@YZ2	@YZ1	@YZ0	R/W	@YZ index pointer
0E8H	TC0D7	TC0D6	TC0D5	TC0D4	TC0D3	TC0D2	TC0D1	TC0D0	W	TC0D
0F8H	S3PC7	S3PC6	S3PC5	S3PC4	S3PC3	S3PC2	S3PC1	S3PC0	R/W	STK3L
0F9H	-	-	-	-	-	S3PC10	S3PC9	S3PC8	R/W	STK3H
0FAH	S2PC7	S2PC6	S2PC5	S2PC4	S2PC3	S2PC2	S2PC1	S2PC0	R/W	STK2L
0FBH	-	-	-	-	-	S2PC10	S2PC9	S2PC8	R/W	STK2H
0FCH	S1PC7	S1PC6	S1PC5	S1PC4	S1PC3	S1PC2	S1PC1	S1PC0	R/W	STK1L
0FDH	-	-	-	-	-	S1PC10	S1PC9	S1PC8	R/W	STK1H
0FEH	S0PC7	S0PC6	S0PC5	S0PC4	S0PC3	S0PC2	S0PC1	S0PC0	R/W	STK0L
0FFH	-	-	-	-	-	S0PC10	S0PC9	S0PC8	R/W	STK0H

Note:

- 1. To avoid system error, please be sure to put all the "0" and "1" as it indicates in the above table.
- All of register names had been declared in SN8ASM assembler.
 One-bit name had been declared in SN8ASM assembler with "F" prefix code.
 "bset", "bclr" instructions are only available to the "R/W" registers.
- 5. For detail description, please refer to the "System Register Quick Reference Table".

2.1.4.4 ACCUMULATOR

The ACC is an 8-bit data register responsible for transferring or manipulating data between ALU and data memory. If the result of operating is zero (Z) or there is carry (C) occurrence, then these flags will be set to PFLAG register.

> Example: Read and write ACC value.

; Read ACC data and store in BUF data memory

MOV BUF, A

; Write a immediate data into ACC

MOV A, #0FH

; Write ACC data from BUF data memory

MOV A, BUF

2.1.4.5 PROGRAM FLAG

The PFLAG register contains the arithmetic status of ALU operation. C, Z bits indicate the result status of ALU operation.

086H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PFLAG	-	-	-	-	-	С	-	Z
Read/Write	-	-	-	-	-	R/W	-	R/W
After reset	ı	-	-	-	-	0	-	0

Bit 2 C: Carry flag

- 1 = Addition with carry, subtraction without borrowing, rotation with shifting out logic "1", comparison result ≥ 0.
- 0 = Addition without carry, subtraction with borrowing signal, rotation with shifting out logic "0", comparison result < 0.

Bit 0 **Z**: Zero flag

- 1 = The result of an arithmetic/logic/branch operation is zero.
- 0 = The result of an arithmetic/logic/branch operation is not zero.

2.1.4.6 PROGRAM COUNTER

The program counter (PC) is a 11-bit binary counter separated into the high-byte 3 and the low-byte 8 bits. This counter is responsible for pointing a location in order to fetch an instruction for kernel circuit. Normally, the program counter is automatically incremented with each instruction during program execution.

Besides, it can be replaced with specific address by executing CALL or JMP instruction. When JMP or CALL instruction is executed, the destination address will be inserted to bit 0 ~ bit 10.

	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC	-	-	-	-	-	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
After reset	ı	ı	-	ı	ı	0	0	0	0	0	0	0	0	0	0	0
	PCH						PCL									

ONE ADDRESS SKIPPING

There are nine instructions (CMPRS, IINCMS, DECMS, BTS0, BTS1) with one address skipping function. If the result of these instructions is true, the PC will add 2 steps to skip next instruction.

If the condition of bit test instruction is true, the PC will add 2 steps to skip next instruction.

BTS1 FC ; To skip, if Carry_flag = 1
JMP COSTEP ; Else jump to COSTEP.

...

COSTEP: NOP

MOV A, BUFO ; Move BUFO value to ACC.

BTS0 FZ ; To skip, if Zero flag = 0.

JMP C1STEP ; Else jump to C1STEP.

. . .

. .

C1STEP: NOP

If the ACC is equal to the immediate data or memory, the PC will add 2 steps to skip next instruction.

CMPRS A, #12H ; To skip, if ACC = 12H.

JMP COSTEP ; Else jump to COSTEP.

• • •

COSTEP: NOP

If the destination increased by 1, which results overflow of 0xFF to 0x00, the PC will add 2 steps to skip next instruction.

INCMS instruction:

INCMS BUF0

JMP COSTEP ; Jump to COSTEP if BUF0 is not zero.

...

COSTEP: NOP

If the destination decreased by 1, which results underflow of 0x00 to 0xFF, the PC will add 2 steps to skip next instruction.

DECMS instruction:

DECMS BUF0

JMP COSTEP ; Jump to COSTEP if BUF0 is not zero.

• • •

COSTEP: NOP

MULTI-ADDRESS JUMPING

Users can jump around the multi-address by either JMP instruction or ADD M, A instruction (M = PCL) to activate multi-address jumping function. Program Counter supports "ADC M,A" instructions for carry to PCH when PCL overflow automatically. For jump table or others applications, users can calculate PC value by the three instructions and don't care PCL overflow problem.

Note: PCH only support PC up counting result and doesn't support PC down counting. When PCL is carry after PCL+ACC, PCH adds one automatically. If PCL borrow after PCL-ACC, PCH keeps value and not change.

> Example: If PC = 0323H (PCH = 03H, PCL = 23H)

; PC = 0323H

MOV A, #28H

MOV PCL, A ; Jump to address 0328H

. . .

; PC = 0328H

MOV A, #00H

MOV PCL, A ; Jump to address 0300H

. . .

Example: If PC = 0323H (PCH = 03H, PCL = 23H)

; PC = 0323H

ADC PCL, A ; PCL = PCL + ACC, the PCH cannot be changed.

JMP A0POINT ; If ACC = 0, jump to A0POINT

 JMP
 A0POINT
 ; If ACC = 0, jump to A0POINT

 JMP
 A1POINT
 ; ACC = 1, jump to A1POINT

 JMP
 A2POINT
 ; ACC = 2, jump to A2POINT

 JMP
 A3POINT
 ; ACC = 3, jump to A3POINT

...

...

2.1.4.7 Y, Z REGISTERS

The Y and Z registers are the 8-bit buffers. There are three major functions of these registers.

- can be used as general working registers
- can be used as RAM data pointers with @YZ register
- can be used as ROM data pointer with the MOVC instruction for look-up table

084H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Υ	YBIT7	YBIT6	YBIT5	YBIT4	YBIT3	YBIT2	YBIT1	YBIT0
Read/Write	R/W							
After reset	ı	ı	ı	1	i	ı	-	-

083H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Z	ZBIT7	ZBIT6	ZBIT5	ZBIT4	ZBIT3	ZBIT2	ZBIT1	ZBIT0
Read/Write	R/W							
After reset	-	-	-	-	-	-	-	-

Example: Uses Y, Z register as the data pointer to access data in the RAM address 025H of bank0.

MOV A, #00H ; To set RAM bank 0 for Y register

MOV Y, A

MOV A, #25H ; To set location 25H for Z register

MOV Z, A MOV A, @YZ ; To read a data into ACC

Example: Uses the Y, Z register as data pointer to clear the RAM data.

MOV A, #0 ; Y = 0, bank 0

MOV Y, A
MOV A, #07FH ; Z = 7FH, the last address of the data memory area

MOV Z, A

CLR_YZ_BUF:

MOV A, #0 ; Clear @YZ to be zero

MOV A, #0 , Clear @12 to be zero

DECMS Z ; Z - 1, if Z = 0, finish the routine

JMP CLR_YZ_BUF ; Not zero

MOV A, #0 ; Clear @YZ to be zero MOV @YZ, A

END_CLR: ; End of clear general purpose data memory area of bank 0

__--

2.1.4.8 R REGISTERS

R register is an 8-bit buffer. There are two major functions of the register.

- Can be used as working register
- For store high-byte data of look-up table
 (MOVC instruction executed, the high-byte data of specified ROM address will be stored in R register and the low-byte data will be stored in ACC).

082H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R	RBIT7	RBIT6	RBIT5	RBIT4	RBIT3	RBIT2	RBIT1	RBIT0
Read/Write	R/W							
After reset	-	-	-	-	-	-	-	-

Note: Please refer to the "LOOK-UP TABLE DESCRIPTION" about R register look-up table application.

2.2 ADDRESSING MODE

2.2.1 IMMEDIATE ADDRESSING MODE

The immediate addressing mode uses an immediate data to set up the location in ACC or specific RAM.

Example: Move the immediate data 12H to ACC.

MOV A, #12H ; To set an immediate data 12H into ACC.

2.2.2 DIRECTLY ADDRESSING MODE

The directly addressing mode moves the content of RAM location in or out of ACC.

> Example: Move 0x12 RAM location data into ACC.

MOV A, 12H ; To get a content of RAM location 0x12 of bank 0 and save in

ACC.

> Example: Move ACC data into 0x12 RAM location.

MOV 12H, A ; To get a content of ACC and save in RAM location 12H of

bank 0.

2.2.3 INDIRECTLY ADDRESSING MODE

The indirectly addressing mode is to access the memory by the data pointer registers (Y/Z).

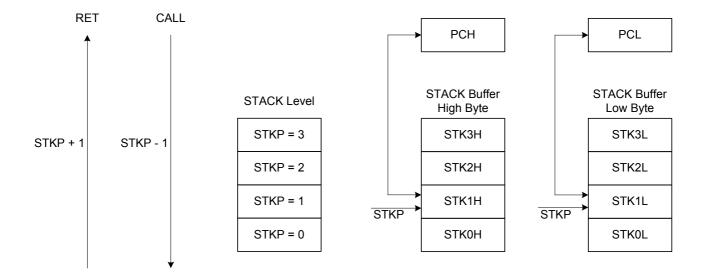
> Example: Indirectly addressing mode with @YZ register.

MOV A, #0 ; To clear Y register to access RAM bank 0.

MOV Y, A

MOV A, #12H ; To set an immediate data 12H into Z register. MOV Z, A

MOV A, @YZ ; Use data pointer @YZ reads a data from RAM location


: 012H into ACC.

2.3 STACK OPERATION

2.3.1 OVERVIEW

The stack buffer has 4-level. These buffers are designed to push and pop up program counter's (PC) data when "CALL" instruction are executed. The STKP register is a pointer designed to point active level in order to push or pop up data from stack buffer. The STKnH and STKnL are the stack buffers to store program counter (PC) data.

2.3.2 STACK REGISTERS

The stack pointer (STKP) is a 2-bit register to store the address used to access the stack buffer, 11-bit data memory (STKnH and STKnL) set aside for temporary storage of stack addresses.

The two stack operations are writing to the top of the stack (push) and reading from the top of stack (pop). Push operation decrements the STKP and the pop operation increments each time. That makes the STKP always point to the top address of stack buffer and write the last program counter value (PC) into the stack buffer.

The program counter (PC) value is stored in the stack buffer before a CALL instruction executed. Stack operation is a LIFO type (Last in and first out). The stack pointer (STKP) and stack buffer (STKnH and STKnL) are located in the system register area bank 0.

0DFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKP	-	-	-	-	-	-	STKPB1	STKPB0
Read/Write	-	-	-	-	-	-	R/W	R/W
After reset	-	-	-	-	-	-	1	1

Bit[2:0] **STKPBn:** Stack pointer (n = $0 \sim 1$)

Example: Stack pointer (STKP) reset, we strongly recommended to clear the stack pointers in the beginning of the program.

MOV A, #00000011B MOV STKP, A

0F0H~0F8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKnH	-	-	-	-	-	SnPC10	SnPC9	SnPC8
Read/Write	-	-	-	-	-	R/W	R/W	R/W
After reset	-	-	-	-	-	0	0	0

0F0H~0F8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKnL	SnPC7	SnPC6	SnPC5	SnPC4	SnPC3	SnPC2	SnPC1	SnPC0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

STKn = STKnH, STKnL $(n = 3 \sim 0)$

2.3.3 STACK OPERATION EXAMPLE

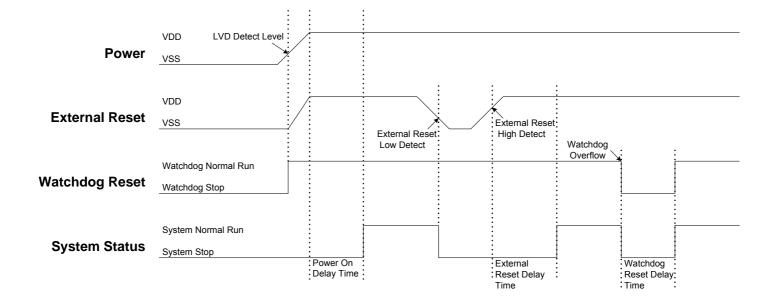
The two kinds of Stack-Save operations refer to the stack pointer (STKP) and write the content of program counter (PC) to the stack buffer are CALL instruction. Under each condition, the STKP decreases and points to the next available stack location. The stack buffer stores the program counter about the op-code address. The Stack-Save operation is as the following table.

Stack Level	STKP F	Register	Stack	Buffer	Description
Stack Level	STKPB1	STKPB0	PB0 High Byte Low I		Description
0	1	1	Free	Free	-
1	1	0	STK0H	STK0L	-
2	0	1	STK1H	STK1L	-
3	0	0	STK2H	STK2L	-
4	1	1	STK3H	STK3L	-
> 4	1	0	-	-	Stack Over, error

There are Stack-Restore operations correspond to each push operation to restore the program counter (PC). The RET instruction is for CALL instruction. When a pop operation occurs, the STKP is incremented and points to the next free stack location. The stack buffer restores the last program counter (PC) to the program counter registers. The Stack-Restore operation is as the following table.

Stack Level	STKP F	Register	Stack	Buffer	Description
Stack Level	STKPB1	STKPB0	High Byte	Low Byte	Description
4	1	1	STK3H	STK3L	-
3	0	0	STK2H	STK2L	-
2	0	1	STK1H	STK1L	-
1	1	0	STK0H	STK0L	-
0	1	1	Free	Free	-

3 RESET


3.1 OVERVIEW

The system would be reset in three conditions as following.

- Power on reset
- Watchdog reset
- Brown out reset
- External reset (only supports external reset pin enable situation)

When any reset condition occurs, all system registers keep initial status, program stops and program counter is cleared. After reset status released, the system boots up and program starts to execute from ORG 0.

Finishing any reset sequence needs some time. The system provides complete procedures to make the power on reset successful. For different oscillator types, the reset time is different. That causes the VDD rise rate and start-up time of different oscillator is not fixed. RC type oscillator's start-up time is very short, but the crystal type is longer. Under client terminal application, users have to take care the power on reset time for the master terminal requirement. The reset timing diagram is as following.

3.2 POWER ON RESET

The power on reset depend no LVD operation for most power-up situations. The power supplying to system is a rising curve and needs some time to achieve the normal voltage. Power on reset sequence is as following.

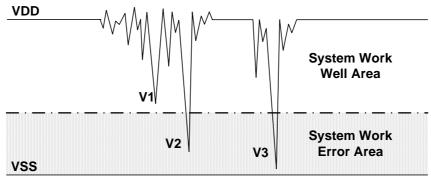
- **Power-up:** System detects the power voltage up and waits for power stable.
- External reset (only external reset pin enable): System checks external reset pin status. If external reset pin is not high level, the system keeps reset status and waits external reset pin released.
- System initialization: All system registers is set as initial conditions and system is ready.
- Oscillator warm up: Oscillator operation is successfully and supply to system clock.
- **Program executing:** Power on sequence is finished and program executes from ORG 0.

3.3 WATCHDOG RESET

Watchdog reset is a system protection. In normal condition, system works well and clears watchdog timer by program. Under error condition, system is in unknown situation and watchdog can't be clear by program before watchdog timer overflow. Watchdog timer overflow occurs and the system is reset. After watchdog reset, the system restarts and returns normal mode. Watchdog reset sequence is as following.

- Watchdog timer status: System checks watchdog timer overflow status. If watchdog timer overflow occurs, the system is reset.
- System initialization: All system registers is set as initial conditions and system is ready.
- Oscillator warm up: Oscillator operation is successfully and supply to system clock.
- Program executing: Power on sequence is finished and program executes from ORG 0.

Watchdog timer application note is as following.


- Before clearing watchdog timer, check I/O status and check RAM contents can improve system error.
- Don't clear watchdog timer in interrupt vector and interrupt service routine. That can improve main routine fail.
- Clearing watchdog timer program is only at one part of the program. This way is the best structure to enhance the watchdog timer function.
- Note: Please refer to the "WATCHDOG TIMER" about watchdog timer detail information.

3.4 BROWN OUT RESET

3.4.1 BROWN OUT DESCRIPTION

The brown out reset is a power dropping condition. The power drops from normal voltage to low voltage by external factors (e.g. EFT interference or external loading changed). The brown out reset would make the system not work well or executing program error.

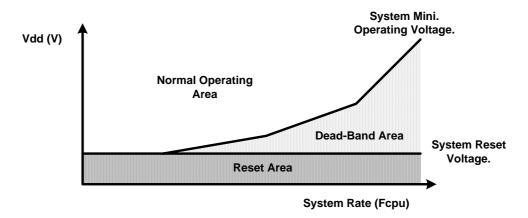
Brown Out Reset Diagram

The power dropping might through the voltage range that's the system dead-band. The dead-band means the power range can't offer the system minimum operation power requirement. The above diagram is a typical brown out reset diagram. There is a serious noise under the VDD, and VDD voltage drops very deep. There is a dotted line to separate the system working area. The above area is the system work well area. The below area is the system work error area called dead-band. V1 doesn't touch the below area and not effect the system operation. But the V2 and V3 is under the below area and may induce the system error occurrence. Let system under dead-band includes some conditions.

DC application:

The power source of DC application is usually using battery. When low battery condition and MCU drive any loading, the power drops and keeps in dead-band. Under the situation, the power won't drop deeper and not touch the system reset voltage. That makes the system under dead-band.

AC application:


In AC power application, the DC power is regulated from AC power source. This kind of power usually couples with AC noise that makes the DC power dirty. Or the external loading is very heavy, e.g. driving motor. The loading operating induces noise and overlaps with the DC power. VDD drops by the noise, and the system works under unstable power situation.

The power on duration and power down duration are longer in AC application. The system power on sequence protects the power on successful, but the power down situation is like DC low battery condition. When turn off the AC power, the VDD drops slowly and through the dead-band for a while.

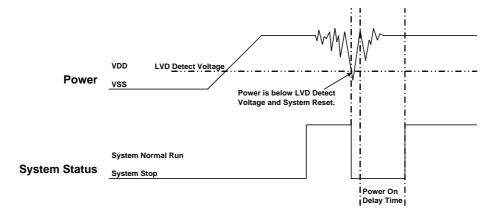
3.4.2 THE SYSTEM OPERATING VOLTAGE DECSRIPTION

To improve the brown out reset needs to know the system minimum operating voltage which is depend on the system executing rate and power level. Different system executing rates have different system minimum operating voltage. The electrical characteristic section shows the system voltage to executing rate relationship.

Normally the system operation voltage area is higher than the system reset voltage to VDD, and the reset voltage is decided by LVD detect level. The system minimum operating voltage rises when the system executing rate upper even higher than system reset voltage. The dead-band definition is the system minimum operating voltage above the system reset voltage.

3.4.3 BROWN OUT RESET IMPROVEMENT

How to improve the brown reset condition? There are some methods to improve brown out reset as following.


- LVD reset
- Watchdog reset
- Reduce the system executing rate
- External reset circuit. (Zener diode reset circuit, Voltage bias reset circuit, External reset IC)

* Note:

- 1. The "Zener diode reset circuit", "Voltage bias reset circuit" and "External reset IC" can completely improve the brown out reset, DC low battery and AC slow power down conditions.
- 2. For AC power application and enhance EFT performance, the system clock is 4MHz/4 (1 mips) and use external reset (" Zener diode reset circuit", "Voltage bias reset circuit", "External reset IC"). The structure can improve noise effective and get good EFT characteristic.

LVD reset:

The LVD (low voltage detector) is built-in Sonix 8-bit MCU to be brown out reset protection. When the VDD drops and is below LVD detect voltage, the LVD would be triggered, and the system is reset. The LVD detect level is different by each MCU. The LVD voltage level is a point of voltage and not easy to cover all dead-band range. Using LVD to improve brown out reset is depend on application requirement and environment. If the power variation is very deep, violent and trigger the LVD, the LVD can be the protection. If the power variation can touch the LVD detect level and make system work error, the LVD can't be the protection and need to other reset methods. More detail LVD information is in the electrical characteristic section.

Watchdog reset:

The watchdog timer is a protection to make sure the system executes well. Normally the watchdog timer would be clear at one point of program. Don't clear the watchdog timer in several addresses. The system executes normally and the watchdog won't reset system. When the system is under dead-band and the execution error, the watchdog timer can't be clear by program. The watchdog is continuously counting until overflow occurrence. The overflow signal of watchdog timer triggers the system to reset, and the system return to normal mode after reset sequence. This method also can improve brown out reset condition and make sure the system to return normal mode. If the system reset by watchdog and the power is still in dead-band, the system reset sequence won't be successful and the system stays in reset status until the power return to normal range.

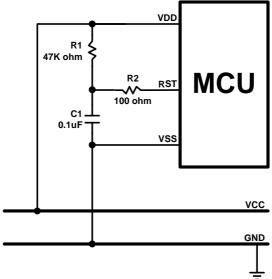
Reduce the system executing rate:

If the system rate is fast and the dead-band exists, to reduce the system executing rate can improve the dead-band. The lower system rate is with lower minimum operating voltage. Select the power voltage that's no dead-band issue and find out the mapping system rate. Adjust the system rate to the value and the system exits the dead-band issue. This way needs to modify whole program timing to fit the application requirement.

External reset circuit:

The external reset methods also can improve brown out reset and is the complete solution. There are three external reset circuits to improve brown out reset including "Zener diode reset circuit", "Voltage bias reset circuit" and "External reset IC". These three reset structures use external reset signal and control to make sure the MCU be reset under power dropping and under dead-band. The external reset information is described in the next section.

3.5 EXTERNAL RESET

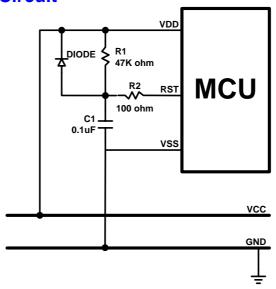

External reset function is controlled by "Reset_Pin" code option. Set the code option as "Reset" option to enable external reset function. External reset pin is Schmitt Trigger structure and low level active. The system is running when reset pin is high level voltage input. The reset pin receives the low voltage and the system is reset. The external reset operation actives in power on and normal running mode. During system power-up, the external reset pin must be high level input, or the system keeps in reset status. External reset sequence is as following.

- External reset (only external reset pin enable): System checks external reset pin status. If external reset pin is not high level, the system keeps reset status and waits external reset pin released.
- System initialization: All system registers is set as initial conditions and system is ready.
- Oscillator warm up: Oscillator operation is successfully and supply to system clock.
- Program executing: Power on sequence is finished and program executes from ORG 0.

The external reset can reset the system during power on duration, and good external reset circuit can protect the system to avoid working at unusual power condition, e.g. brown out reset in AC power application...

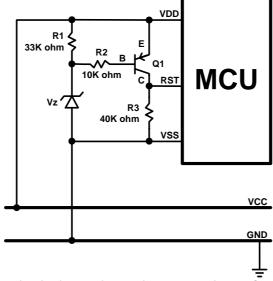
3.6 EXTERNAL RESET CIRCUIT

3.6.1 Simply RC Reset Circuit



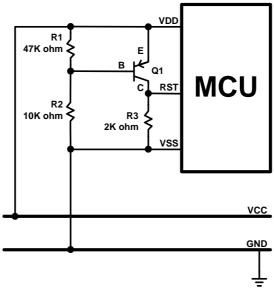
This is the basic reset circuit, and only includes R1 and C1. The RC circuit operation makes a slow rising signal into reset pin as power up. The reset signal is slower than VDD power up timing, and system occurs a power on signal from the timing difference.

Note: The reset circuit is no any protection against unusual power or brown out reset.


3.6.2 Diode & RC Reset Circuit

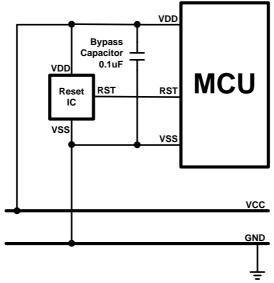
This is the better reset circuit. The R1 and C1 circuit operation is like the simply reset circuit to make a power on signal. The reset circuit has a simply protection against unusual power. The diode offers a power positive path to conduct higher power to VDD. It is can make reset pin voltage level to synchronize with VDD voltage. The structure can improve slight brown out reset condition.

Note: The R2 100 ohm resistor of "Simply reset circuit" and "Diode & RC reset circuit" is necessary to limit any current flowing into reset pin from external capacitor C in the event of reset pin breakdown due to Electrostatic Discharge (ESD) or Electrical Over-stress (EOS).


3.6.3 Zener Diode Reset Circuit

The zener diode reset circuit is a simple low voltage detector and can **improve brown out reset condition completely**. Use zener voltage to be the active level. When VDD voltage level is above "Vz + 0.7V", the C terminal of the PNP transistor outputs high voltage and MCU operates normally. When VDD is below "Vz + 0.7V", the C terminal of the PNP transistor outputs low voltage and MCU is in reset mode. Decide the reset detect voltage by zener specification. Select the right zener voltage to conform the application.

3.6.4 Voltage Bias Reset Circuit

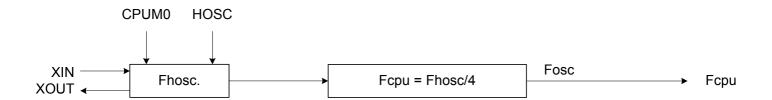

The voltage bias reset circuit is a low cost voltage detector and can **improve brown out reset condition completely**. The operating voltage is not accurate as zener diode reset circuit. Use R1, R2 bias voltage to be the active level. When VDD voltage level is above or equal to "0.7V x (R1 + R2) / R1", the C terminal of the PNP transistor outputs high voltage and MCU operates normally. When VDD is below "0.7V x (R1 + R2) / R1", the C terminal of the PNP transistor outputs low voltage and MCU is in reset mode.

Decide the reset detect voltage by R1, R2 resistances. Select the right R1, R2 value to conform the application. In the circuit diagram condition, the MCU's reset pin level varies with VDD voltage variation, and the differential voltage is 0.7V. If the VDD drops and the voltage lower than reset pin detect level, the system would be reset. If want to make the reset active earlier, set the R2 > R1 and the cap between VDD and C terminal voltage is larger than 0.7V. The external reset circuit is with a stable current through R1 and R2. For power consumption issue application, e.g. DC power system, the current must be considered to whole system power consumption.

Note: Under unstable power condition as brown out reset, "Zener diode rest circuit" and "Voltage bias reset circuit" can protects system no any error occurrence as power dropping. When power drops below the reset detect voltage, the system reset would be triggered, and then system executes reset sequence. That makes sure the system work well under unstable power situation.

3.6.5 External Reset IC

The external reset circuit also use external reset IC to enhance MCU reset performance. This is a high cost and good effect solution. By different application and system requirement to select suitable reset IC. The reset circuit can improve all power variation.


4 SYSTEM CLOCK

4.1 OVERVIEW

The micro-controller is a single clock system. The high-speed clock is generated from the external oscillator circuit. The high-speed clock can be system clock (Fosc). The system clock is divided by 4 to be the instruction cycle (Fcpu).

Normal Mode (High Clock): Fcpu = Fhosc/4.

4.2 CLOCK BLOCK DIAGRAM

- HOSC: High Clk code option.
- Fhosc: External high-speed clock.
- Fosc: System clock source.
- Fcpu: Instruction cycle.

4.3 OSCM REGISTER

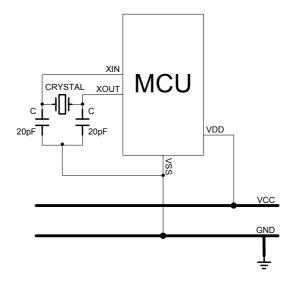
The OSCM register is an oscillator control register. It controls oscillator status, system mode.

0CAH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OSCM	0	0	0	0	CPUM0	0	0	0
Read/Write	-	-	-	-	R/W	-	-	-
After reset	-	-	-	-	0	-	_	-

Bit 3 **CPUM0:** Power down mode (sleep mode) control bit.

0 = normal.

1 = power down mode (sleep mode).


> Example: When entering the power down mode (sleep mode), high-speed oscillator will be stopped.

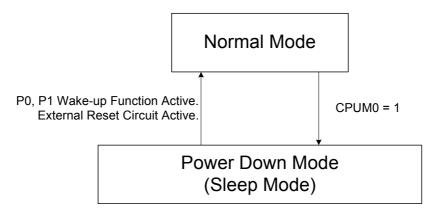
BSET FCPUM0 ; To stop external high-speed oscillator called power down

; mode (sleep mode).

4.4 SYSTEM HIGH CLOCK

Crystal/Ceramic devices are driven by XIN, XOUT pins. Only support 4MHz oscillator frequency.

Note: Connect the Crystal/Ceramic and C as near as possible to the XIN/XOUT/VSS pins of micro-controller.



5 SYSTEM OPERATION MODE

5.1 OVERVIEW

The chip is featured with low power consumption by switching around two different modes as following.

- Normal mode (High-speed mode)
- Power-down mode (Sleep mode)

System Mode Switching Diagram

Operating mode description

MODE	NORMAL	POWER DOWN (SLEEP)	REMARK
EHOSC	Running	Stop	
CPU instruction	Executing	Stop	
T0 timer	*Active	Inactive	* Active if T0ENB=1
Watchdog timer	By Watch_Dog Code option	By Watch_Dog Code option	Refer to code option description
Wakeup source	-	P0, P1, Reset	·

EHOSC: External high clock

5.2 SYSTEM MODE SWITCHING

> Example: Switch normal/slow mode to power down (sleep) mode.

BSET FCPUM0 ; Set CPUM0 = 1.

Note: During the sleep, only the wakeup pin and reset can wakeup the system back to the normal mode.

5.3 WAKEUP

5.3.1 OVERVIEW

Under power down mode (sleep mode), program doesn't execute. The wakeup trigger can wake the system up to normal mode. The wakeup trigger sources are external trigger (P0, P1 level change).

Power down mode is waked up to normal mode. The wakeup trigger is only external trigger (P0, P1 level change)

5.3.2 WAKEUP TIME

When the system is in power down mode (sleep mode), the high clock oscillator stops. When waked up from power down mode, MCU waits for 4096 external high-speed oscillator clocks as the wakeup time to stable the oscillator circuit. After the wakeup time, the system goes into the normal mode.

The value of the wakeup time is as the following.

The Wakeup time = 1/Fosc * 4096 (sec) + high clock start-up time

- * Note: The high clock start-up time is depended on the VDD and oscillator type of high clock.
- Example: In power down mode (sleep mode), the system is waked up. After the wakeup time, the system goes into normal mode. The wakeup time is as the following.

The wakeup time = 1/Fosc * 4096 = 1.024 ms (Fosc = 4MHz)

The total wakeup time = 1.024ms + oscillator start-up time

I/O PORT

There are 16 I/O pins and three ports in the MCU. All pins include pull-up registers and with power down mode wake-up function in input mode. The pull-up resistor and wake-up function are fixed.

- P0.0~P0.3 are input only pin.
- P0.4 is input only pin and shared with external reset pin controlled by code option.
- P0.6, P0.7 are bit-direction I/O controlled by P0M register.
- P1 is bit-direction I/O port controlled by P0M register.
- IROUT is IR signal output pin as IROUT=1. When IR output disable and the system is in power down mode, IROUT outputs low status. (More detail information in "IR OUTPUT" section.)

I/O PORT MODE 6.1

The port direction is programmed by PnM register. All I/O ports can select input or output direction.

0B8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0M	P07M	P06M	-	-	-	-	-	-
Read/Write	R/W	R/W	-	-	-	-	-	-
After reset	0	0	-	-	-	-	-	-

0C1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1M	P17M	P16M	P15M	P14M	P13M	P12M	P12M	P10M
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

PnM[7:0]: Pn mode control bits. (n = $0\sim1$). Bit[7:0]

0 = Pn is input mode.

1 = Pn is output mode.

Note: Users can program them by bit control instructions (BSET, BCLR).

A. #0H

Example: I/O mode selecting

MOV	A, #0H	; Set all ports to be input mode.
MOV	P0M, A	
MOV	P1M, A	
MOV	A, #0FFH	; Set all ports to be output mode.
MOV	P0M, A	
MOV	P1M, A	

BCLR P1M.2 ; Set P1.2 to be input mode.

BSET P1M.2 ; Set P1.2 to be output mode.

6.2 I/O PORT DATA REGISTER

0D0H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0	P07	P06	-	P04	P03	P02	P01	P00
Read/Write	R/W	R/W	-	R	R	R	R	R
After reset	0	0	-	0	0	0	0	0

0D1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P17	P16	P15	P14	P13	P12	P11	P10
Read/Write	R	R/W	R	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0

* Note: The P04 keeps "1" when external reset enable by code option.

Note: When set P1.4 to input mode, please add the series external 100 ohm on it.

> Example: Read data from input port.

MOV A, P0 ; Read data from Port 0 MOV A, P1 ; Read data from Port 1

Example: Write data to output port.

MOV A, #0FFH ; Write data FFH to all Port.

MOV P0, A MOV P1, A

> Example: Write one bit data to output port.

BSET P1.3 ; Set P1.3 and P5.5 to be "1".

BCLR P1.3 ; Set P1.3 and P5.5 to be "0".

7 TIMERS

7.1 WATCHDOG TIMER

The watchdog timer (WDT) is a binary up counter designed for monitoring program execution. If the program goes into the unknown status by noise interference, WDT overflow signal raises and resets MCU. Watchdog clock controlled by code option and the clock source is internal low-speed oscillator (16KHz @3V, 32KHz @5V).

Watchdog overflow time = 8192 / Internal Low-Speed oscillator (sec).

VDD	Internal Low RC Freq.	Watchdog Overflow Time
3V	16KHz	512ms
5V	32KHz	256ms

Note: If watchdog is "Always_On" mode, it keeps running event under power down mode or green mode.

Watchdog clear is controlled by WDTR register. Moving **0x5A** data into WDTR is to reset watchdog timer.

0CCH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTR	WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	WDTR0
Read/Write	W	W	W	W	W	W	W	W
After reset	0	0	0	0	0	0	0	0

Example: An operation of watchdog timer is as following. To clear the watchdog timer counter in the top of the main routine of the program.

; Clear the watchdog timer.

Main:

MOV MOV	A, #5AH WDTR, A
•••	
CALL CALL	SUB1 SUB2
 JMP	MAIN

Example: Clear watchdog timer by @RST_WDT macro.

Main:

@RST_WDT ; Clear the watchdog timer.
...
CALL SUB1
CALL SUB2
...
...
JMP MAIN

Watchdog timer application note is as following.

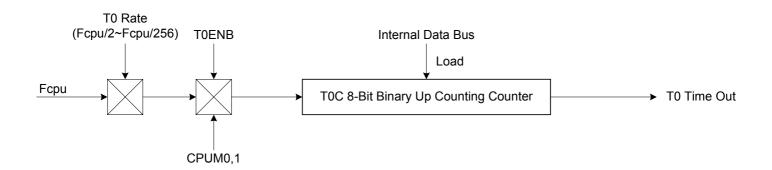
...

JMP

- Before clearing watchdog timer, check I/O status and check RAM contents can improve system error.
- Clearing watchdog timer program is only at one part of the program. This way is the best structure to enhance the watchdog timer function.
- Example: An operation of watchdog timer is as following. To clear the watchdog timer counter in the top of the main routine of the program.

Main: ; Check I/O. ... ; Check RAM JMP \$; I/O or RAM error. Program jump here and don't Err: ; clear watchdog. Wait watchdog timer overflow to reset IC. ; I/O and RAM are correct. Clear watchdog timer and Correct: ; execute program. @RST_WDT ; Only one clearing watchdog timer of whole program. **CALL** SUB1 **CALL** SUB2 . . .

MAIN


7.2 TIMER 0 (T0)

7.2.1 OVERVIEW

The T0 is an 8-bit binary up timer without interrupt function. If T0 timer occurs an overflow (from FFH to 00H), it will continue counting and issue a time-out signal to trigger T0 interrupt request flag and set T0IRQ (T0IRQ=1). Tracking T0IRQ status is to get right timer period by polling program.

The main purposes of the T0 timer is as following.

8-bit programmable up counting timer: Generates timer overflow request at specific time intervals based on the selected clock frequency.

7.2.2 TOM MODE REGISTER

0D8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TOM	T0ENB	T0rate2	T0rate1	T0rate0	-	-	-	-
Read/Write	R/W	R/W	R/W	R/W	-	-	-	-
After reset	0	0	0	0	-	-	-	-

Bit [6:4] **TORATE[2:0]:** To internal clock select bits.

000 = fcpu/256. 001 = fcpu/128.

110 = fcpu/4. 111 = fcpu/2.

Bit 7 **T0ENB:** T0 counter control bit.

0 = Disable T0 timer. 1 = Enable T0 timer.

7.2.3 TOC COUNTING REGISTER

TOC is an 8-bit counter register for T0 interval time control.

0D9H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T0C	T0C7	T0C6	T0C5	T0C4	T0C3	T0C2	T0C1	T0C0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

The equation of T0C initial value is as following.

Example: To set 10ms interval time for T0 interrupt. High clock is external 4MHz. Fcpu=Fosc/4. Select T0RATE=010 (Fcpu/64).

The basic timer table interval time of T0.

T0RATE	T0CLOCK	High speed mode	(Fcpu = 4MHz / 4)	Low speed mode (Fcpu = 32768Hz / 4)		
TOTALL	TOCLOCK	Max overflow interval	One step = max/256	Max overflow interval	One step = max/256	
000	Fcpu/256	65.536 ms	256 us	8000 ms	31250 us	
001	Fcpu/128	32.768 ms	128 us	4000 ms	15625 us	
010	Fcpu/64	16.384 ms	64 us	2000 ms	7812.5 us	
011	Fcpu/32	8.192 ms	32 us	1000 ms	3906.25 us	
100	Fcpu/16	4.096 ms	16 us	500 ms	1953.125 us	
101	Fcpu/8	2.048 ms	8 us	250 ms	976.563 us	
110	Fcpu/4	1.024 ms	4 us	125 ms	488.281 us	
111	Fcpu/2	0.512 ms	2 us	62.5 ms	244.141 us	

7.2.4 TO TIMER OPERATION SEQUENCE

T0 timer operation sequence of setup T0 timer is as following.

Stop T0 timer counting, clear T0 interrupt request flag.

BCLR FT0ENB ; T0 timer.

BCLR FT0IRQ ; T0 time out request flag is cleared.

Set T0 timer rate.

MOV A, #0xxx0000b ;The T0 rate control bits exist in bit4~bit6 of T0M. The

; value is from x000xxxxb~x111xxxxb.

MOV T0M,A ; T0 timer is disabled.

Set T0 interrupt interval time.

MOV A,#7FH

MOV TOC,A ; Set TOC value.

Enable T0 timer.


BSET FT0ENB ; Enable T0 timer.

8 IR OUTPUT

8.1 OVERVIEW

IR signal is generated by TC0 timer. The IR output pin is IROUT pin. When IROUT bit of TC0M is logic "1", IROUT pin outputs IR signal. If IROUT = 0 or system is in power down mode, IRPUT pin is tied to low status. The TC0 is an 8-bit binary up counting timer for IR signal generator. The IR signal is duty/cycle changeable type controlled by TC0R and TC0D. TC0R decides IR cycle and TC0D decides IR duty. TC0 clock source is only from Fhosc (external high clock source), eg. 4MHz crystal. If external oscillator is 4MHz, the TC0 clock rate is 4MHz. TC0 only generate IR output and no interrupt function. When enable IR output function (IROUT=1), IR output status is high level. TC0C initial value is TC0R and starts to count. When TC0C=TC0D, IR output status change to low level and finishes high duty operation. When TC0C overflow occurs (TC0C changes from 0xFF to 0x00), IR output low duty operation stops. System loads TC0R into TC0C automatically and next cycle starts.

8.2 IR CONTROL REGISTER

8.2.1 TC0M MODE REGISTER

0DAH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC0M	-	-	-	-	-	-	-	IROUT
Read/Write	-	-	-	-	-	-	-	R/W
After reset	-	-	-	-	-	-	-	0

Bit 0 **IROUT:** IR output control bit.

0 = Disable IR output. IROUT pin is low status..

1 = Enable IR output. IR signal output to IROUT pin.

Note: When IROUT=0 or the system is in power down mode, IROUT pin keeps low status.

8.2.2 TC0C COUNTING REGISTER

TC0C is an 8-bit counter register for TC0 interval time control.

0DBH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC0C	TC0C7	TC0C6	TC0C5	TC0C4	TC0C3	TC0C2	TC0C1	TC0C0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

Note: Set TC0C=TC0R before IR output enable to make sure the first cycle correct.

8.2.3 TCOR AUTO-LOAD REGISTER

TC0R decides IR signal frequency. TC0 timer is with auto-load function. When TC0C overflow occurs, TC0R value will load to TC0C. It is easy to generate an accurate time for IR signal cycle, and users don't reset TC0C during interrupt service routine.

TC0 is double buffer design. If new TC0R value is set by program, the new value is stored in 1st buffer. Until TC0 overflow occurs, the new value moves to real TC0R buffer.

0CDH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC0R	TC0R7	TC0R6	TC0R5	TC0R4	TC0R3	TC0R2	TC0R1	TC0R0
Read/Write	W	W	W	W	W	W	W	W
After reset	0	0	0	0	0	0	0	0

The equation of TC0Rinitial value is as following.

TCOR initial value = 256 - (TC0 interrupt interval time * input clock)

- Note: The input clock is 4MHz of external 4MHz oscillator.
- > Example: Set IR cycle frequency is 38KHz. Input clock is 4MHz.

TC0R initial value = 256 - (TC0 interrupt interval time * input clock)

TC0 interval time = 1/38KHz = 26.3us Input clock = external oscillator 4MHz.

8.2.4 TC0D IR DUTY CONTROL REGISTER

The IR signal is duty changeable by TC0D. TC0D decides the IR output signal high pulse width length. When TC0C=TC0D, the IR signal changes from high pulse to low pulse. The low pulse stops when TC0C overflow. The high pulse width is TC0D-TC0R, and the low pulse width is 256-TC0D. It is easy to modulate IR duty/cycle by TC0R and TC0D registers.

0E8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC0D	TC0D7	TC0D6	TC0D5	TC0D4	TC0D3	TC0D2	TC0D1	TC0D0
Read/Write	W	W	W	W	W	W	W	W
After reset	0	0	0	0	0	0	0	0

The equation of TC0Dinitial value is as following.

Example: Set TC0D for 38KHz IR and duty is 1/3. Input clock is 4MHz.

$$TC0D$$
 initial value = $TC0R + (256-TC0R) / (1/IR duty)$

TC0R of 38KHz = 151

$$TCOD = 151 + (256-151)/(1/(1/3))$$

= 186
= **BAh**

Common IR signal table. System clock is 4MHz.

ID 5	TC0	С			TC0	D			_	
IR Freq. (KHz)	TC0	D	1/2 du	ıty	1/3 du	ıty	1/4du	ty	Freq. Error Rate	
,	DEC	HEX	DEC	HEX	DEC	HEX	DEC	HEX		
32	131	83	193.50	C1	172.67	AC	162.25	A2	0.00%	
36	145	91	200.50	C8	182.00	В6	172.75	AC	0.10%	
38	151	97	203.50	СВ	186.00	ВА	177.25	B1	0.25%	
39.2	154	9A	205.00	CD	188.00	ВС	179.50	В3	0.04%	
40	156	9C	206.00	CE	189.33	BD	181.00	B5	0.00%	
56	185	В9	220.50	DC	208.67	D0	202.75	CA	0.60%	

8.2.5 IR OUTPUT OPERATION SEQUENCE

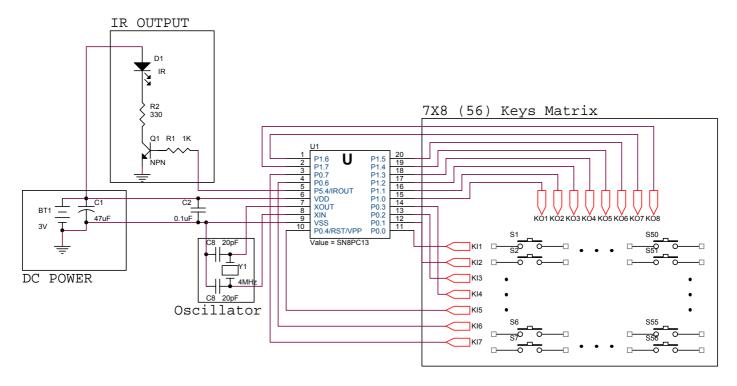
Set TC0C and TC0R for IR cycle.

MOV A, #IRCYCVAL ;TC0C, TC0R value for IR cycle.

MOV TCOC, A MOV TCOR, A

Set TC0D for IR duty.

MOV A, #IRDUTYVAL ;TC0D value for IR duty.


MOV TC0D, A

Enable IR output.

BSET FIROUT ; Enable IR output from IROUT pin.

8.3 IR REMOTE CONTROLLER APPLICATION CIRCUIT

The application circuit is a typical IR remote controller circuit.

- Reset pin set as P0.4 input only pin for key matrix input pin. If the project needs external reset pin, the maximum key number is only 49 keys.
- The keys are low active type and pulled by P0 internal 100k ohm pull-up resistors.
- The system clock source is 4MHz crystal or ceramic.
- IR transmitter is driven by a transistor and there must be connected a resistor between IROUT pin and transistor's B terminal. The resistor value must be greater than 330 ohm better, or the current through IROUT pin is over standard 15mA.
- The IR power is supplied from battery power terminal and after C1 47uF capacitor to make sure power stable while IR transmitting.
- The IR circuit is drive type. The IROUT pin initial value is low status. When stop IR transmitting or the system is in
 power down mode, the IROUT pin keeps low status and won't be turn on to consume power. The IR only
 supports drive type.
- The C2 is MUC's power bypass capacitor. The value is 0.1uF and it must be beside IC as closer as possible.

9

INSTRUCTION TABLE

Field	Mner	nonic	Description	С	Ζ	Cycle
MOVE	MOV	A,M	$A \leftarrow M$	-	√	1
	MOV	M,A	$M \leftarrow A$	-	-	1
	MOV	A,I	$A \leftarrow I$	-	-	1
	MOVC		$R, A \leftarrow ROM[Y,Z]$	-	-	2
ARITHMETIC	ADC	A,M	A ← A + M + C, if occur carry, then C=1, else C=0		$\sqrt{}$	1
	SBC	A,M	$A \leftarrow A - M - /C$, if occur borrow, then C=0, else C=1			1
LOGIC	AND	A,M	A ← A and M	-	$\sqrt{}$	1
	OR	A,M	$A \leftarrow A \text{ or } M$	-		1
	XOR	A,M	$A \leftarrow A \text{ xor } M$	-		1
	RRC	M	$A \leftarrow RRC M$		-	1
	BCLR	M.b	$M.b \leftarrow 0$	-	-	1
	BSET	M.b	M.b ← 1	-	-	1
BRANCH	CMPRS	A,I	$ZF,C \leftarrow A - I$, If $A = I$, then skip next instruction	√	√	1+S
	INCMS	M	$M \leftarrow M + 1$, If $M = 0$, then skip next instruction	-	-	1+S
	DECMS	М	$M \leftarrow M - 1$, If $M = 0$, then skip next instruction	-	-	1+S
	BTS0	M.b	If M.b = 0, then skip next instruction	-	-	1+S
	BTS1	M.b	If M.b = 1, then skip next instruction	-	-	1+S
	JMP	d	PC15/14 ← RomPages1/0, PC13~PC0 ← d	-	-	2
	CALL	d	Stack ← PC15~PC0, PC15/14 ← RomPages1/0, PC13~PC0 ← d	-	-	2
MIS	RET		PC ← Stack	-	-	2
	NOP		No operation	-	-	1

Note: 1. "M" is system register or RAM.

^{2.} If branch condition is true then "S = 1", otherwise "S = 0".

10 ELECTRICAL CHARACTERISTIC

10.1 ABSOLUTE MAXIMUM RATING

Supply voltage (Vdd)	0.3V ~ 6.0V
Input in voltage (Vin)	Vss – 0.2V ~ Vdd + 0.2V
Operating ambient temperature (Topr), SN8PC13P, SN8PC13S, SN8PC13X	0°C ~ + 70°C
Storage ambient temperature (Tstor)	

10.2 ELECTRICAL CHARACTERISTIC

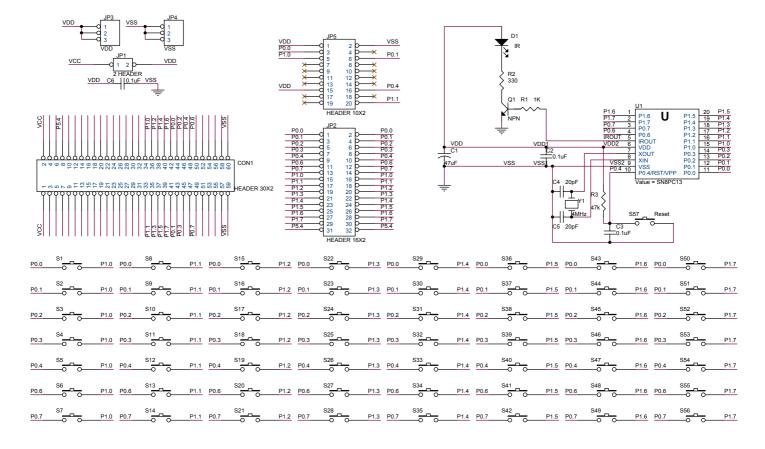
(All of voltages refer to Vss, Vdd = 5.0V, fosc = 4MHz, Fcpu=1MHZ, ambient temperature is 25°C unless otherwise note.)

PARAMETER	SYM.	DESC	RIPTION	MIN.	TYP.	MAX.	UNIT
Operating voltage	Vdd	Normal mode, Vpp = Vdo	Normal mode, Vpp = Vdd.				V
RAM Data Retention voltage	Vdr			-	1.5*	-	V
Vdd rise rate	Vpor	Vdd rise rate to ensure ir	nternal power-on reset	0.05	-	-	V/ms
Input Low Voltage	ViL1	All input ports		Vss	-	0.3Vdd	V
input Low Voltage	ViL2	Reset pin	Vss	1	0.2Vdd	V	
1 115 1 37 11	ViH1	All input ports	0.7Vdd	ı	Vdd	V	
Input High Voltage	ViH2	Reset pin	0.9Vdd	-	Vdd	V	
Reset pin leakage current	llekg	Vin = Vdd	Vin = Vdd				uA
I/O port pull un register	Rup	Vin = Vss , Vdd = 3V		100	200	300	ΚΩ
I/O port pull-up resistor	Kup	Vin = Vss , Vdd = 5V	50	100	150		
I/O port input leakage current	llekg	Pull-up resistor disable, \	Vin = Vdd	-	-	2	uA
I/O output source current	loH	Vop = Vdd - 0.5V		-	12*	-	mA
sink current	loL	Vop = Vss + 0.5V		-	15*	-	ША
	ldd1	normal Mode	Vdd= 5V, Fcpu=4Mhz/4	-	2.5	5	mA
Supply Current	iuu i	(No loading)	Vdd= 3V, Fcpu=4Mhz/4	-	1	2	mA
	ldd2	Idd2 Sleep Mode Vdd= 5V	-	0.8	1.6	uA	
	iduz Sieep iviode		Vdd= 3V	-	0.7	1.4	uA
LVD Voltage	Vdet0	Low voltage reset level.	0°C~70°C.	1.6	2.0	2.1	V

^{*}These parameters are for design reference, not tested.

11 DEVELOPMENT TOOL

SN8PC13 development tools are as following.


- ICE version: SN8ICE2K.
- IDE version: M2IDE V107 later.
- Writer: EZ-writer, MP-writer. Use "SN8PC13 MPxxxx" transition board.
- SN8PC13 Ev-kit.

SN8PC13 IDE files haven't included into M2IDE. Please set these files into IDE paths as following.

- Move "SN8PC13.bit" into "C:\Sonix\M2IDE_Vxxx\Bit_File".
- Move "SN8PC13.bol" into "C:\Sonix\M2IDE_Vxxx\Symbol".
- Move "SN8PC13.inc" into "C:\Sonix\M2IDE_Vxxx\use_inc2".
- Move "SN8PC13.prg" into "C:\Sonix\M2IDE_Vxxx\use_prg".

Include these file into IDE path, the M2IDE can simulate and program SN8PC13.

For IR remote controller development, Sonix provides a "SN8PC13 EV-kit" and supports M2IDE_V107 and later IDE. The Ev-kit includes 56keys and IR output circuit. The EV-kit circuit is as following.

12 OTP PROGRAMMING PIN

12.1 The pin assignment of Easy Writer transition board socket:

Easy Writer JP1/JP2

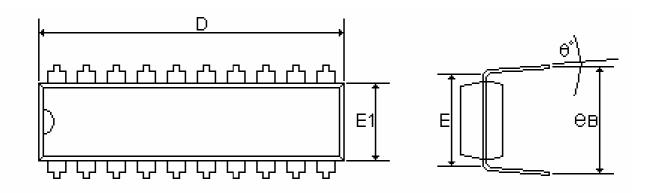
VSS	2	1	VDD
CE	4	3	CLK/PGCLK
OE/ShiftDat	6	5	PGM/OTPCLK
D0	8	7	D1
D2	10	9	D3
D4	12	11	D5
D6	14	13	D7
VPP	16	15	VDD
RST	18	17	HLS
ALSB/PDB	20	19	-

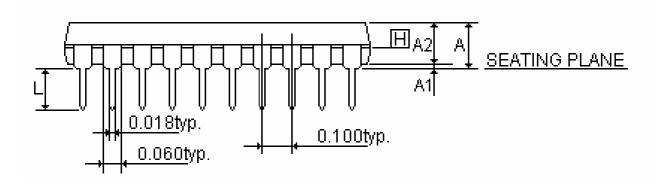
JP1 for MP transition board

Easy Writer JP3 (Mapping to 48-pin text tool)

DIP1	1	48	DIP48
DIP2	2	47	DIP47
DIP3	3	46	DIP46
DIP4	4	45	DIP45
DIP5	5	44	DIP44
DIP6	6	43	DIP43
DIP7	7	42	DIP42
DIP8	8	41	DIP41
DIP9	9	40	DIP40
DIP10	10	39	DIP39
DIP11	11	38	DIP38
DIP12	12	37	DIP38
DIP13	13	36	DIP36
DIP14	14	35	DIP35
DIP15	15	34	DIP34
DIP16	16	33	DIP33
DIP17	17	32	DIP32
DIP18	18	31	DIP31
DIP19	19	30	DIP30
DIP20	20	29	DIP29
DIP21	21	28	DIP28
DIP22	22	27	DIP27
DIP23	23	26	DIP26
DIP24	24	25	DIP25
IDO famili	4D 4		

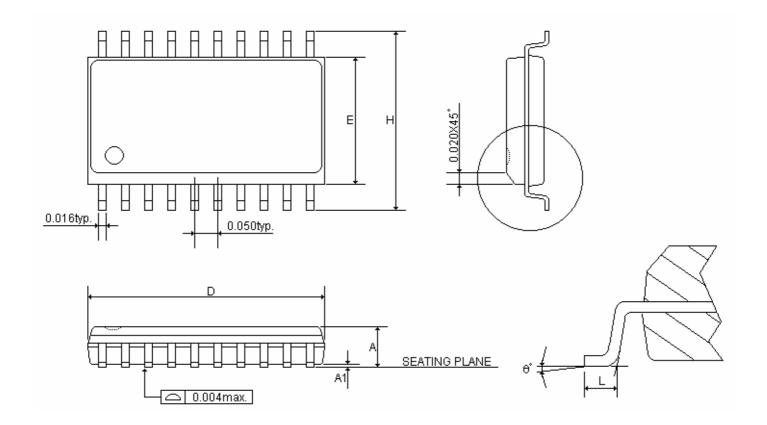
JP3 for MP transition board


12.2 Programming Pin Mapping:

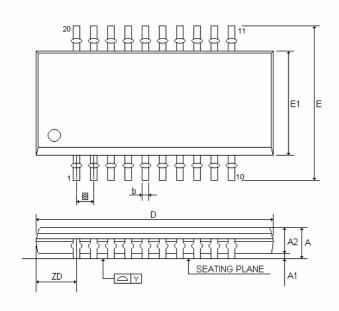

		Pro	grammi	ng Information of SN8PC13							
Chi	p Name	SN8PC13	P/S/X								
EZ Writer / MP Writer Connector			OTP IC / JP3 Pin Assigment								
Number	Name	Number	Pin								
1	VDD	6	VDD								
2	GND	9	VSS								
3	CLK	11	P0.0								
4	CE	_	-								
5	PGM	15	P1.0								
6	OE	12	P0.1								
7	D1	-	-								
8	D0	_	-								
9	D3	1	-								
10	D2	ı	-								
11	D5	ı	-								
12	D4	ı	-								
13	D7	_	-								
14	D6	_	-								
15	VDD	-	-								
16	VPP	10	RST								
17	HLS	_	-								
18	RST	-	-								
19	-	-	-								
20	ALSB/PDB	16	P1.1								

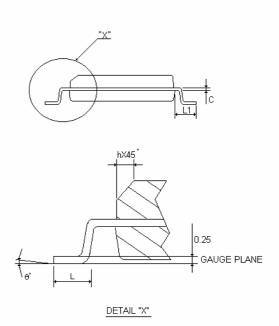
13 PACKAGE INFORMATION

13.1 P-DIP 20 PIN



SYMBOLS	MIN	NOR	MAX	MIN	NOR	MAX			
STWBULS		(inch)		(mm)					
Α	-	-	0.210	-	-	5.334			
A1	0.015	-	-	0.381	-	-			
A2	0.125	0.130	0.135	3.175	3.302	3.429			
D	0.980	1.030	1.060	24.892	26.162	26.924			
E		0.300			7.620	26.924			
E1	0.245	0.250	0.255	6.223	6.350	6.477			
L	0.115	0.130	0.150	2.921	3.302	3.810			
eВ	0.335	0.355	0.375	8.509	9.017	9.525			
θ°	0 °	7°	15°	0 °	7°	15°			

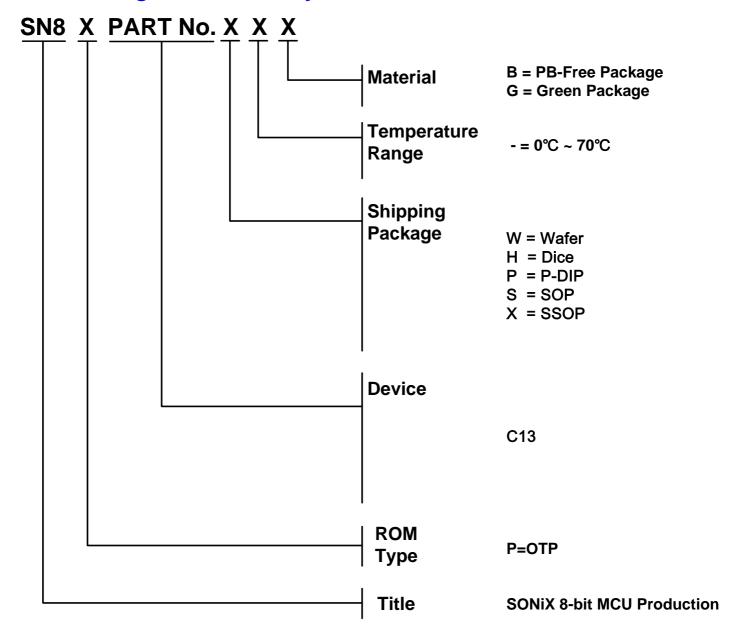

13.2 SOP 20 PIN



SYMBOLS	MIN	NOR	MAX	MIN	NOR	MAX
	(inch)			(mm)		
Α	0.093	0.099	0.104	2.362	2.502	2.642
A1	0.004	0.008	0.012	0.102	0.203	0.305
D	0.496	0.502	0.508	12.598	12.751	12.903
E	0.291	0.295	0.299	7.391	7.493	7.595
Н	0.394	0.407	0.419	10.008	10.325	10.643
L	0.016	0.033	0.050	0.406	0.838	1.270
θ°	0 °	4 °	8°	0 °	4 °	8°

13.3 SSOP 20 PIN

SYMBOLS	MIN	NOR	MAX	MIN	NOR	MAX
	(inch)			(mm)		
Α	0.053	0.063	0.069	1.350	1.600	1.750
A1	0.004	0.006	0.010	0.100	0.150	0.250
A2	-	-	0.059	-	-	1.500
b	0.008	0.010	0.012	0.200	0.254	0.300
С	0.007	0.008	0.010	0.180	0.203	0.250
D	0.337	0.341	0.344	8.560	8.660	8.740
E	0.228	0.236	0.244	5.800	6.000	6.200
E1	0.150	0.154	0.157	3.800	3.900	4.000
[e]	0.025			0.635		
h	0.010	0.017	0.020	0.250	0.420	0.500
L	0.016	0.025	0.050	0.400	0.635	1.270
L1	0.039	0.041	0.043	1.000	1.050	1.100
ZD	0.059			1.500		
Υ	-	-	0.004	-	-	0.100
θ°	0 °	-	8°	0°	-	8°

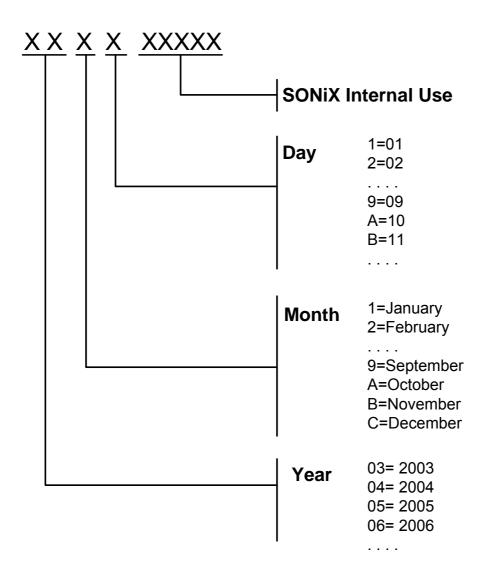


14 Marking Definition

14.1 INtroduction

There are many different types in Sonix 8-bit MCU production line. This note listed the production definition of all 8-bit MCU for order or obtain information. This definition is only for Blank OTP MCU.

14.2 Marking indetification system



14.3 Marking Example

Name	ROM Type	Device	Package	Temperature	Material
SN8PC13PG	OTP	C13	P-DIP	0°C~70°C	Green Package
SN8PC13SB	OTP	C13	SOP	0°C~70°C	PB-Free Package

14.4 Datecode system

There are total 8~9 letters of SONiX datecode system. The final four or five char. are for Sonix inside use only, and the first 4 indicate the Package date including Year/Month/Date. The detail information is following:

SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.

Main Office:

Address: 9F, NO. 8, Hsien Cheng 5th St, Chupei City, Hsinchu, Taiwan R.O.C.

Tel: 886-3-551 0520 Fax: 886-3-551 0523 **Taipei Office:**

Address: 15F-2, NO. 171, Song Ted Road, Taipei, Taiwan R.O.C.

Tel: 886-2-2759 1980 Fax: 886-2-2759 8180 **Hong Kong Office:**

Address: Flat 3 9/F Energy Plaza 92 Granville Road, Tsimshatsui East Kowloon.

Tel: 852-2723 8086 Fax: 852-2723 9179

Technical Support by Email:

Sn8fae@sonix.com.tw