

SN8P2839 Series USER'S MANUAL Version 1.4

SN8P2839

SONiX 8-Bit Micro-Controller

SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.

AMENDENT HISTORY

Version	Date	Description					
VER 1.0	2011.05.17	Modify UART Baud Rate table.					
VER 1.1	2011.08.08	Modify Package TYPE.					
VER 1.2	2011.09.27	Add Jmp/Call description.					
VER 1.3	2012.02.15 Modify electrical characteristic.						
VER 1.4	2012.07.16	Modify Function description.					

Table of Content

	AMEN	DENT HISTORY	. 2
1	PRC	DDUCT OVERVIEW	. 9
	1.1	FEATURES	. 9
	1.2	SYSTEM BLOCK DIAGRAM	11
	1.3	PIN ASSIGNMENT	12
	1.4	PIN DESCRIPTIONS	13
	1.5	PIN CIRCUIT DIAGRAMS	15
2	CEN	VTRAL PROCESSOR UNIT (CPU)	16
	2.1	MEMORY MAP	16
	2.1.1	PROGRAM MEMORY (ROM)	16
	2.2	RESET VECTOR (0000H)	17
	2.3	INTERRUPT VECTOR (0008H)	18
	2.4	JMP/CALL DESCRIPTION	19
	2.5	LOOK-UP TABLE DESCRIPTION	20
	2.6	JUMP TABLE DESCRIPTION	22
	2.7	CODE OPTION TABLE	24
	2.8	DATA MEMORY (RAM)	25
	2.8.1	RBANK Register	26
	2.9	SYSTEM REGISTER	26
	2.9.1	SYSTEM REGISTER TABLE	26
	2.9.2		
	2.9.3	BIT DEFINITION of SYSTEM REGISTER	27
	2.10	ACCUMULATOR	29
	2.11	PROGRAM COUNTER	29
		PROGRAM FLAG	
		H, L REGISTERS	
		Y, Z REGISTERS	
		X REGISTERS	
		R REGISTERS	
		ADDRESSING MODE	
	2.17.		
	2.17.		
	2.17.		
		STACK OPERATION	
	2.18	1 OVERVIEW	37

	2.18.2	STACK REGISTERS	. 38
	2.18.3	STACK OPERATION EXAMPLE	. 39
3	RESE	Γ	. 40
		VERVIEW OWER ON RESET	
		JWER ON RESET	
		ATCHDOG RESET	
	3.4 L2 3.4.1	EXTERNAL RESET CIRCUIT	
		OW VOLTAGE DETECTOR (LVD)	
•			
4		EM CLOCK	
		VERVIEW	
		LOCK BLOCK DIAGRAM	
		SCM REGISTER	-
		YSTEM HIGH CLOCK	
	4.4.1	INTERNAL HIGH RC	
	4.4.2	EXTERNAL HIGH CLOCK	
	-	STAL/CERAMIC	
		ERNAL CLOCK SIGNAL	
		YSTEM LOW CLOCK	
	4.5.1	SYSTEM CLOCK MEASUREMENT	
5	SYSTE	EM OPERATION MODE	. 50
	5.1 O	VERVIEW	. 50
	5.2 SY	YSTEM MODE SWITCHING EXAMPLE	. 51
	5.3 W	AKEUP	. 52
	5.3.1	OVERVIEW	. 52
	5.3.2	WAKEUP TIME	. 52
	5.3.3	PIW WAKEUP CONTROL REGISTER	53
6	INTEF	RRUPT	. 54
	6.1 O'	VERVIEW	51
		VER VIEW	
		TRQ INTERRUPT REQUEST REGISTER	
		IE GLOBAL INTERRUPT OPERATION	
		USH, POP ROUTINE	
		XTERNAL INTERRUPT OPERATION (INT00~INT01)	
		T10~INT15 (P10~P15) INTERRUPT OPERATION	
) INTERRUPT OPERATION	

	6.9	T1 INTERRUPT OPERATION	63
	6.10	TC0 INTERRUPT OPERATION	64
	6.11		64
	6.12	TC1 INTERRUPT OPERATION	65
	6.13	MULTI-INTERRUPT OPERATION	66
7	I/O	PORT	67
	7.1	I/O PORT MODE	67
	7.2	I/O PULL UP REGISTER	68
	7.3	I/O PORT DATA REGISTER	68
	7.4	I/O OPEN-DRAIN REGISTER	70
	7.5	PORT 4 ADC SHARE PIN	72
8	TIN	1ERS	74
	8.1	WATCHDOG TIMER (WDT)	74
	8.2	TIMER 0 (T0)	
	8.2.	l OVERVIEW	76
	8.2.2	2 TOM MODE REGISTER	77
	8.2	3 TOC COUNTING REGISTER	78
	8.2.4	4 TO TIMER OPERATION SEQUENCE	79
	8.3	TIMER 1 (T1)	80
	8.3.	<i>I OVERVIEW</i>	80
	8.3.2	2 T1M MODE REGISTER	80
	<i>8.3</i>	<i>T1C COUNTING REGISTER</i>	81
	8.4	T2 16-BIT TIMER WITH CAPTURE TIMER FUNCTION	82
	8.4.	1 OVERVIEW	82
	8.4.2	2 T2 TIMER OPERATION	82
	8.4		
	8.4.4	4 T2CH, T2CL 16-bit COUNTING REGISTERS	84
	8.4		
	8.	4.5.1 Capture Timer	85
		4.5.2 High Pulse Width Measurement	
		4.5.3 Low Pulse Width Measurement	
		4.5.4 Input Cycle Measurement	
	8.4.		
	8.4.		
	8.5	T3 16-BIT TIMER WITH CAPTURE TIMER FUNCTION	
	8.5.		
	8.5.2		
	8.5	3 T3M MODE REGISTER	94

	\backslash	λ

8.5	.4	T3CH, T3CL 16-bit COUNTING REGISTERS	
8.5	.5	T3 CPATURE TIMER	
8	8.5.5.1	Capture Timer	
8	8.5.5.2	High Pulse Width Measurement	
8	8.5.5.3	Low Pulse Width Measurement	
8	8.5.5.4	Input Cycle Measurement	
8.5	.6	CAPTURE TIMER CONTROL REGISTERS	
8.5	.7	T3 TIMER OPERATION EXPLAME	
8.6	TIM	IER/COUNTER 0 (TC0)	
8.6	.1	OVERVIEW	101
8.6	.2	TCOM MODE REGISTER	
8.6	.3	TC0X8 FLAG	103
8.6	.4	TCOC COUNTING REGISTER	103
8.6	.5	TCOR AUTO-LOAD REGISTER	105
8.6	.6	TC0 CLOCK FREQUENCY OUTPUT (BUZZER)	
8.6	.7	TC0 TIMER OPERATION SEQUENCE	
8.7	TIM	تر IER/COUNTER 1 (TC1)	
8.7		OVERVIEW	
8.7	.2	TC1M MODE REGISTER	110
8.7	.3	TC1X8 FLAG	110
8.7	.4	TC1C COUNTING REGISTER	111
8.7	.5	TC1R AUTO-LOAD REGISTER	113
8.7	.6	TC1 CLOCK FREQUENCY OUTPUT (BUZZER)	
8.7	.7	TC1 TIMER OPERATION SEQUENCE	
8.8	PW	~ M0 MODE	
8.8	.1	OVERVIEW	117
8.8	.2	TCxIRQ and PWM Duty	
8.8	.3	PWM Duty with TCxR Changing	
8.8	.4	PWM PROGRAM EXAMPLE	
8.9	PW	M1 MODE	
8.9	.1	OVERVIEW	121
8.9	.2	TCxIRQ and PWM Duty	
8.9	.3	PWM Duty with TCxR Changing	
8.9	9.4	PWM PROGRAM EXAMPLE	
۸V	36 1 0	CD DRIVER	195
9.1		ERVIEW	
9.2		DREGISTERS	
9.3		ORAM MAP	
9.4	LCI	OWAVEFORM	

9

9.5	LCD BLOCK	
10	CHARGE-PUMP, PGIA AND OPA	
10.1	OVERVIEW	
10.2	BLOCK DIAGRAM	
10.3	VOLTAGE CHARGE-PUMP REGULATOR (CPR)	
10.	3.1 CPM-Regulator Mode Register	
10.	3.2 Power source Block Diagrem	
10.	3.3 CPCKS-Charge Pump Clock Register	
10.4		
10.	4.1 PGIAM- PGIA Mode Register	
10.	4.2 PGIACKS- PGIA CLOCK SELECTION	
10.5	OPA – OPERATIONAL AMPLIFIER	
10.	5.1 OPM- OPA Mode Register	
11 [,]	7+1 CHANNEL ANALOG TO DIGITAL CONVERTER	
11.1	OVERVIEW	
11.2	ADM REGISTER	
11.3	ADR REGISTERS	
11.4	ADB REGISTERS	
11.5	P4CON REGISTERS	
11.6	ADC CONVERTING TIME	
11.7	ADC ROUTINE EXAMPLE	
11.8	ADC CIRCUIT	
12	I CHANNEL DIGITAL TO ANALOG CONVERTER	
12.1	DAC REGISTER	
13	SERIAL INPUT/OUTPUT TRANSCEIVER (SIO)	
13.1	OVERVIEW	
13.2	SIO OPERATION	
13.3	SIOM MODE REGISTER	
13.4	SIOB DATA BUFFER	
13.5	SIOR REGISTER DESCRIPTION	
14	UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)	150
14.1	OVERVIEW	
14.2	UART OPERATION	151
14.3	UART BAUD RATE	
14.4	UART TRANSFER FORMAT	
14.5	BREAK POCKET	

			_
	14.6	ABNORMAL POCKET	154
	14.7	UART RECEIVER CONTROL REGISTER	154
	14.8	UART TRANSMITTER CONTROL REGISTER	155
	14.9	UART DATA BUFFER	155
	14.10	UART OPERATION EXAMLPE	156
15	A	APPLICATION CIRCUIT	159
16	Ι	NSTRUCTION TABLE	160
17	E	ELECTRICAL CHARACTERISTIC	162
	17.1	ABSOLUTE MAXIMUM RATING	162
	17.2	STANDARD ELECTRICAL CHARACTERISTIC	162
18	(DTP PROGRAMMING PIN	164
	18.1	SN8P2839 Series Programming Pin Mapping:	164
19	P	PACKAGE INFORMATION	
	19.1	LQFP100	
20	Ν	AARKING DEFINITION	166
	20.1	INTRODUCTION	166
	20.2	MARKING INDETIFICATION SYSTEM	166
	20.3	MARKING EXAMPLE	167
	20.4	DATECODE SYSTEM	167

1.1 FEATURES

Memory configuration

OTP ROM size: 24K * 16 bits (ROM Page 0/1) RAM size: 2048 * 8 bits (bank 0/1/2/3/4/5/6/7/8) 16-levels stack buffer LCD RAM size: 4*36 bits(bank 15)

- I/O pin configuration (Total 26 pins) Bi-directional: P0,P1,P2,P4,P5 Programmable open-drain: P10~P13,P50~P52 Wakeup: P0,P1 level change trigger. P0,P1 Green mode ,Sleep mode wake up. Pull-up resisters:P0, P1, P2, P4, P5 P4 pins shared with ADC inputs. P12,P13 shared with UART function. (P12/UTX,P13/URX) Event counter input: P00 is TC0 event counter input. P01 is TC1 event counter input.
 - P15 is T1 event counter input.
 - P11 is T2 event counter input. P14 is T3 event counter input.

Interrupt sources

9 internal interrupts: T0,T1,T2,T3,TC0,TC1,ADC,UART,SIO eight external interrupts:P0,P1

Timer System

T0: 8-bit timer with green mode wakeup function T1: 8-bit timer with event counter function T2:16-bit Timer with Capture Timer Function. T3:16-bit Timer with Capture Timer Function TC0:Auto-reload timer/PWM0/Buzzer output TC1:Auto-reload timer/PWM1/Buzzer output Real Time Clock (RTC): 0.5 second On chip watchdog timer

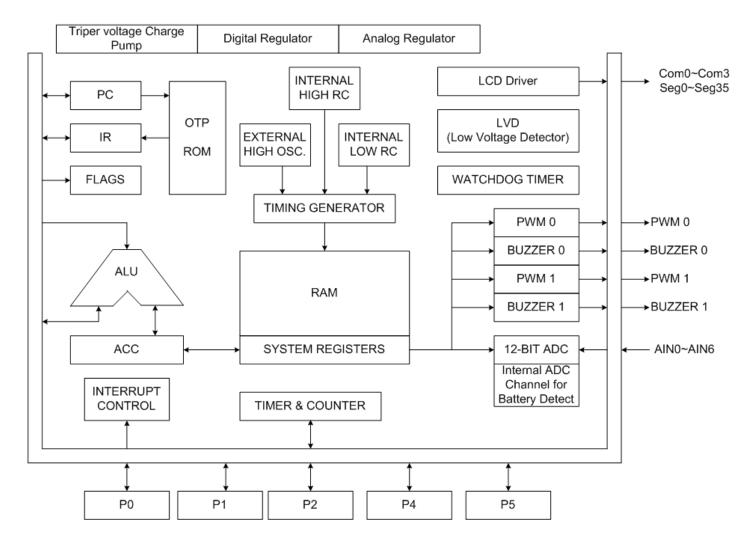
Powerful instructions

Four clocks per instruction cycle All instructions are one word length. Most of instructions are one cycle only Maximum instruction cycle is "2". JMP instruction jumps to all ROM area. All ROM area lookup table function (MOVC) Hardware multiplier (MUL)

- Single power supply: Built-in Triple Charge-Pump @ VBAT=2.0V~3.5V VBAT=2.0V~6.0V DVDD=2.4V~5.5V VBAT Maximum Driving current 10mA @2.0V
- Three Built-in Regulator
 Digital Regulator: DVDDR = 4.5V
 Analog Regulator: AVDDR1=3.8V, AVDDR2=2.5V
- Two-sets PGIA
 Programmable Gain Instrumentation Amplifier
 Gain 1: 16/32/64/128
 Gain 2: 1.3 ~ 2.5
- 1 channel UART Interface.
- 1 channel 12-bit DAC.
- Two-sets Operational Amplifier
- One channel SIO interface.
- Built-in Two Battery Measurement
 1/2 VBAT, 1/4 VBAT optional
- LCD driver:
 1/4 duty, 1/3 bias
 4 common * 36 segment
 (Built-in internal resistor:10k,50k,100k,200k)
- Build-in DVDD LVD=2.2V / 2.4V / 3.6V
- 7+1 channels 12-bit ADC
- Built-in Internal High Clock 16MHZ.
- System clocks and Operating modes

Internal high clock: RC type up to 16MHz Internal low clock: RC type 16KHz(3V), 32KHz(5V) External high clock: Crystal type 32KHZ up to 16MHZ. External high clock: RC type up to 10MHZ. External low clock: Crystal type 32KHZ. Normal mode: Both high and low clock active Slow mode: Low clock only Sleep mode: Both high and low clock stop Green mode: Periodical wakeup by T0/TC0 timer

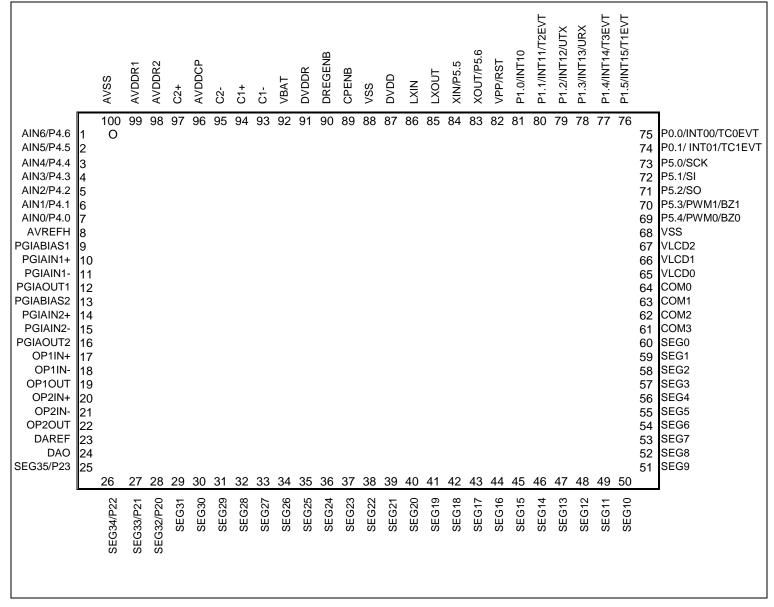
 Package LQFP100



Features Selection Table

0.110	5.01		a				Tin	ner			10	ADC		PWM			Wakeup	
CHIP	ROM	RAM	Stack	LCD	то	T 1	Т2	Т3	тсо	TC1	I/O	ch	DAC	Buzzer	SIO	UART	Pin no.	Package
SN8P2839F	24K*16	2048*8	16	4*36	v	v	v	v	v	v	26	7+1	1	2	1	1	8	LQFP100

1.2 SYSTEM BLOCK DIAGRAM



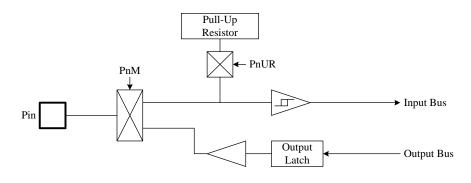
1.3 PIN ASSIGNMENT

SN8P2839F

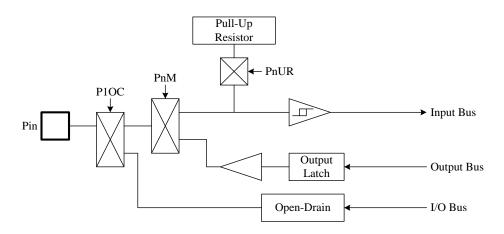
LQFP100

1.4 PIN DESCRIPTIONS

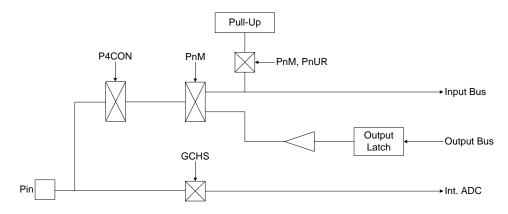
PIN NAME		DESCRIPTION
VBAT, VSS	Р	Power supply input pins for Charge pump.
DVDDR	Р	Digital Regulator Output DVDDR=4.5V
AVDDR1	Р	Analog Regulator Output AVDDR=3.8V.
AVDDR2	Р	Analog Regulator Output AVDDR=2.5V.
DVDD	Р	Digital Function Power Input
AGND	Р	Analog Ground.
AVDDCP	Р	Tripler Charge Pump Voltage output. (Connect a 2.2uF or higher capacitor to ground) Maximum output of 15mA@2.0V(Sum of DVDDR and AVDDR)
CPENB		Charge pump Enable control pin. (Low Enable)
DREGENB	I	Digital Regulator Enable control pin. (Low Enable)
RST	I	System reset input pin. Schmitt trigger structure, active "low", normal stay to "high".
XIN, XOUT	I, O	External oscillator pins. RC mode from XIN.
LXIN, LXOUT	I, O	Low speed (32768 Hz) oscillator pins. RC mode from LXIN.
P00/INT00/TC0EVT	I	Port 00 bi-direction pin / Built-in pull-up resistances. Interrupt INT00/ Wake up from Sleep and Green mode. TC0 event counter input.
P01/INT01/TC1EVT	I	Port 01 bi-direction pin / Built-in pull-up resistances. Interrupt INT01/ Wake up from Sleep and Green mode. TC1 event counter input.
P10/INT10	I/O	Port 10 bi-direction pin/ Built-in pull-up resistances. P10 build-in Open Drain function. Interrupt INT10/ Wake up from Sleep and Green mode.
P11/INT11/T2EVT	I/O	Port 11 bi-direction pin/ Built-in pull-up resistances. P11 build-in Open Drain function. Interrupt INT11/ Wake up from Sleep and Green mode. T2 Capture timer Input.
P12/INT12/UTX	I/O	Port 12 bi-direction pins/ Built-in pull-up resistances. P12 build-in Open Drain function. (Note:P12 no support Open Drain function in ICE emulate.) Interrupt INT12/ Wake up from Sleep and Green mode. UART TX PIN.
P13/INT13/URX	I/O	Port 13 bi-direction pins/ Built-in pull-up resistances. P13 build-in Open Drain function. (Note:P13 no support Open Drain function in ICE emulate.) Interrupt INT13/ Wake up from Sleep and Green mode. UART RX PIN.
P14/INT14/T3EVT	I/O	Port 14 bi-direction pin/ Built-in pull-up resistances. Interrupt INT14/ Wake up from Sleep and Green mode. T3 Capture timer Input.
P15/INT15/T1EVT	I/O	Port 15 bi-direction pin/ Built-in pull-up resistances. Interrupt INT15/ Wake up from Sleep and Green mode. T1 Event Counter Clock Input
P5.0/SCK	I/O	Port 5.0 bi-direction pin and Built-in pull-up resisters. build-in Open Drain function. SIO SCK PIN.
P5.1/SI	I/O	Port 5.1 bi-direction pin and Built-in pull-up resisters. build-in Open Drain function. SIO SI PIN.
P5.2/SO	I/O	Port 5.2 bi-direction pin and Built-in pull-up resisters. build-in Open Drain function. SIO SO PIN.
P5.3 / BZ1 / PWM1	I/O	Port 5.3 bi-direction pin, TC1 signal output pin or PWM1 output pin. Built-in pull-up resisters.
P5.4 / BZ0 / PWM0	I/O	Port 5.4 bi-direction pin, TC0 signal output pin or PWM0 output pin. Built-in pull-up resisters.


8-Bit MCU build-in 12-bit ADC + PGIA + Charge-pump Regulator + 144 dots LCD driver

		6-bu Mee bullurin 12-bu ADe + 1 GIA + charge-pump Regulator + 144 abis LeD arter
XIN/P5.5	I/O	Port 5.5 bi-direction pins / Built-in pull-up resistances and shared with XIN
XOUT/P5.6	I/O	Port 5.6 bi-direction pins / Built-in pull-up resistances and shared with XOUT
P4.0/AIN0 ~	I/O	Port 4.0 ~ Port 4.6 bi-direction pins / built-in pull-up resistances and shared with ADC
P4.6/AIN6	1/0	channels AIN0~AIN6
AIN0 ~ AIN6	I	Analog signal input pins for ADC converter.
COM0 ~ COM3	0	LCD driver common pins.
SEG0 ~ SEG31	0	LCD driver segment pins.
SEG32/P20~ SEG35/P23	0	LCD driver segment pins and shared with P20~P23
AVREFH		ADC's reference high voltage input pins.
OP1IN+, OP1IN-	I	Operational Amplifier 1 Input Channels
OP1OUT	0	Operational Amplifier 1 Output Channel
OP2IN+, OP2IN-	I	Operational Amplifier 2 Input Channels
OP2OUT	0	Operational Amplifier 2 Output Channel
PGIAIN1+,	1	PGIA1 Input Channel.
PGIAIN1-	1	
PGIAOUT1	0	PGIA1 Output Channel
PGIABIAS1	I	PGIA1 Bias Voltage input
PGIAIN2+,	1	PGIA2 Input Channel.
PGIAIN2-		
PGIAOUT2	0	PGIA2 Output Channel
PGIABIAS2		PGIA2 Bias Voltage input
DAO	0	12-bit Digital to Analog Converter output
DAREF	I	DAC Reference Voltage Input.
C1+	A	Positive capacitor 1 terminal for charge pump regulator
C1-	A	Negative capacitor 1 terminal for charge pump regulator
C2+	A	Positive capacitor 2 terminal for charge pump regulator
C2-	A	Negative capacitor 2 terminal for charge pump regulator
		LCD bias voltage.
VLCD2	Р	VLCD2=2/3*VLCD.
		VLCD=DVDD.
	_	LCD bias voltage.
VLCD1	Р	VLCD1=1/3*VLCD.
		VLCD=DVDD.
VLCD0	Р	LCD bias voltage.
	•	VLCD0=.VSS



1.5 PIN CIRCUIT DIAGRAMS


General purpose I/O pin:

General purpose I/O pin with open-drain structure:

Port 4 structure:

2 CENTRAL PROCESSOR UNIT (CPU)

2.1 MEMORY MAP

2.1.1 PROGRAM MEMORY (ROM)

24K words ROM

		ROM	
	0000H	Reset vector	User reset vector Jump to user start address
	0001H		
	•	General purpose area	
	0007H		
ROM Page 0	0008H	Interrupt vector	User interrupt vector
	0009H		User program
	000AH		
		General purpose area	
	3FFFH		
	4000H		
	•		
ROM Page 1		General purpose area	
	5FFBH		End of user program
	5FFFH		
	JLLL		

2.2 RESET VECTOR (0000H)

A one-word vector address area is used to execute system reset.

- Power On Reset (NT0=1, NPD=0).
- Watchdog Reset (NT0=0, NPD=0).
- External Reset (NT0=1, NPD=1).

After power on reset, external reset or watchdog timer overflow reset, then the chip will restart the program from address 0000h and all system registers will be set as default values. It is easy to know reset status from NT0, NPD flags of PFLAG register. The following example shows the way to define the reset vector in the program memory.

> Example: Defining Reset Vector

	ORG JMP 	0 START	; 0000H ; Jump to user program address.
START:	ORG	10H	; 0010H, The head of user program.
			; User program
	ENDP		; End of program

2.3 INTERRUPT VECTOR (0008H)

A 1-word vector address area is used to execute interrupt request. If any interrupt service executes, the program counter (PC) value is stored in stack buffer and jump to 0008h of program memory to execute the vectored interrupt. Users have to define the interrupt vector. The following example shows the way to define the interrupt vector in the program memory.

- Note: The "PUSH" and "POP" operations aren't through instruction (PUSH, POP). MCU can executed save and load ACC and working registers (0x80~0x87) by hardware automatically.
- > Example: Defining Interrupt Vector. The interrupt service routine is following ORG 8.

.CODE	ORG JMP 	0 START	; 0000H ; Jump to user program address.
Int_:	ORG	8	; Interrupt vector. (load ACC and working registers (0x80~0x87) by hardware automatically)
int			
	RETI		; End of interrupt service routine (load ACC and working registers (0x80~0x87) by hardware automatically)
START:			; The head of user program. ; User program
	 JMP 	START	; End of user program
	ENDP		; End of program

.CODE	ORG JMP	0 START	; 0000H ; Jump to user program address.
	ORG	8	; Interrupt vector. ;(load ACC and working registers (0x80~0x87) by hardware automatically)
	JMP	MY_IRQ	; 0008H, Jump to interrupt service routine address.
START:	ORG	10H	; 0010H, The head of user program. ; User program.
	JMP	START	; End of user program.
MY_IRQ:			;The head of interrupt service routine.
	RETI		; End of interrupt service routine. ; (load ACC and working registers (0x80~0x87) by hardware automatically)
	ENDP		; End of program.

Example: Defining Interrupt Vector. The interrupt service routine is following user program.

▶ Note: It is easy to understand the rules of SONIX program from demo programs given above. These points are as following:

- 1. The address 0000H is a "JMP" instruction to make the program starts from the beginning.
- 2. The address 0008H is interrupt vector.
- 3. User's program is a loop routine for main purpose application.

2.4 Jmp/Call DESCRIPTION

The Jmp and Call instruction length=2 machine word (2 ROM Address). When executing of "Jmp \$+" or "Jmp \$-", user have to check Jmp/Call instruction length.

Note: Jmp and Call instruction length = 2 machine word (2 ROM Address).

Example: Jmp \$+

ROM Addre	ess		
0020H	JMP	\$+8	//Jump to "MOV A,#07H"
0022H	JMP	\$+5	//Jump to "MOV A,#06H"
0024H	JMP	\$+2	//Jump to "MOV A,#05H"
0026H	MOV	A,#05H	
0027H	MOV	A,#06H	
0028H	MOV	A,#07H	
0029H	JMP	A0POINT	

2.5 LOOK-UP TABLE DESCRIPTION

In the ROM's data lookup function, X register is pointed to high byte address (bit 16~bit 23), Y register is pointed to middle byte address (bit 8~bit 15) and Z register is pointed to low byte address (bit 0~bit 7) of ROM. After MOVC instruction executed, the low-byte data will be stored in ACC and high-byte data stored in R register.

> Example: To look up the ROM data located "TABLE1".

	BOMOV BOMOV BOMOV MOVC	X, #TABLE1\$H Y, #TABLE1\$M Z, #TABLE1\$L	; To set lookup table1's high address ; To set lookup table1's middle address ; To set lookup table1's low address. ; To lookup data, R = 00H, ACC = 35H
	INCMS JMP INCMS JMP INCMS NOP	Z @F Y @F X	; Increment the index address for next address. ; Z+1 ; Z is not overflow. ; Z is overflow, Y=Y+1. ; Y is not overflow. ; Y is overflow, X=X+1.
@@:	MOVC		; ; To lookup data, R = 51H, ACC = 05H.
TABLE1:	DW DW DW	0035H 5105H 2012H	; ; To define a word (16 bits) data.

* Note: The X, Y registers will not increase automatically when Y, Z registers crosses boundary from 0xFF to 0x00. Therefore, user must take care such situation to avoid loop-up table errors. If Z register is overflow, Y register must be added one. If Y register is overflow, X register must be added one. The following INC_XYZ macro shows a simple method to process X, Y and Z registers automatically.

Example: INC_XYZ macro.

INC_XYZ	MACRO INCMS JMP	Z @F	; Z+1 ; Not overflow
	INCMS JMP	Y @F	; Y+1 ; Not overflow
@@ .	INCMS NOP	Х	; X+1 ; Not overflow
@@:	ENDM		

> Example: Modify above example by "INC_XYZ" macro.

	B0MOV B0MOV B0MOV MOVC	X, #TABLE1\$H Y, #TABLE1\$M Z, #TABLE1\$L	; To set lookup table1's high address ; To set lookup table1's middle address ; To set lookup table1's low address. ; To lookup data, R = 00H, ACC = 35H
	INC_XYZ		; Increment the index address for next address.
@@:	MOVC		To lookup data, $R = 51H$, ACC = 05H.
TABLE1:	DW DW DW	0035H 5105H 2012H	; ; To define a word (16 bits) data.

The other example of loop-up table is to add X, Y or Z index register by accumulator. Please be careful if "carry" happen.

Example: Increase Y and Z register by B0ADD/ADD instruction.

	B0MOV B0MOV B0MOV	X, #TABLE1\$H Y, #TABLE1\$M Z, #TABLE1\$L	; To set lookup table1's high address ; To set lookup table1's middle address ; To set lookup table's low address.
	B0MOV B0ADD	A, BUF Z, A	; Z = Z + BUF.
	B0BTS1 JMP INCMS JMP INCMS NOP	FC GETDATA Y GETDATA X	; Check the carry flag. ; FC = 0 ; FC = 1. Y+1. ; Y is not overflow. ; Y is overflow, X=X+1.
GETDATA:	MOVC		; ; To lookup data. If BUF = 0, data is 0x0035 ; If BUF = 1, data is 0x5105 ; If BUF = 2, data is 0x2012
TABLE1:	DW DW DW	0035H 5105H 2012H	; To define a word (16 bits) data.

2.6 JUMP TABLE DESCRIPTION

The jump table operation is one of multi-address jumping function. Add low-byte program counter (PCL) and ACC value to get one new PCL. The new program counter (PC) points to a series jump instructions as a listing table. It is easy to make a multi-jump program depends on the value of the accumulator (A).

Program counter will occur ERROR when executing PCL addition instruction (B0ADD/ADD/ADC PCL,A) in ROM Address PCL=0xFD or 0xFE.

If the instruction (B0ADD/ADD/ADC PCL,A) in ROM Address =(xxxxFD) or(xxxxFE), user have to move the instruction (B0ADD/ADD PCL,A) to the top of next program memory page (xxxx00H). Here one page mean 256 words.

Note: Program counter will occur ERROR when executing PCL addition instruction (B0ADD/ADD/ADC PCL,A) in ROM Address PCL=0xFD or 0xFE.

> Example: Jump Table ERROR.

ROM Address 00FCH 00FDH	MOV B0ADD	A,#0 <mark>PCL,a</mark>
00FEH 0100H 0102H 0104H	JMP JMP JMP JMP	Here0 Here1 Here2 Here3
Modify :		
ROM Address 00FCH 00FDH 00FEH 00FFH 0100H	MOV NOP NOP NOP B0ADD	A,#0 PCL,a
0101H 0103H 0105H 0107H	JMP JMP JMP JMP	Here0 Here1 Here2 Here3

//← ERROR!

//"BOADD PCL,A" instruction in ROM ADDRESS PCL=0xFD. //After executing BOADD instruction, program counter occur ERROR.

//"B0ADD PCL,A"instruction in ROM ADDRESS PCL=0x00. //After executing BOADD instruction, jump to Here0.

Example: Jump Table ERROR.

ROM Address

00FDH	MOV	A,#2
00FEH	B0ADD	PCL,a
00FFH	JMP	Here0
0101H	JMP	Here1
0103H	JMP	Here2
0105H	JMP	Here3

.....

•

//← ERROR!

//"BOADD PCL,A" instruction in ROM ADDRESS PCL=0xFE. //After executing BOADD instruction, program counter occur ERROR.

Modify :

-	
ROM	Address

00FDH 00FEH 00FEH	MOV NOP NOP	A,#2
0100H	BOADD	PCL,a
0101H	JMP	Here0
0103H 0105H	JMP JMP	Here1 Here2
0107H	JMP	Here3

//"B0ADD PCL,A"instruction in ROM ADDRESS PCL=0x00. //After executing BOADD instruction, jump to HERE1

Example: Jump Table correct.

ROM Address 00FBH 00FCH	•	MOV B0ADD	A,#4 PCL,a
00FDH 00FFH 0101H 0103H		JMP JMP JMP JMP	Here0 Here1 Here2 Here3

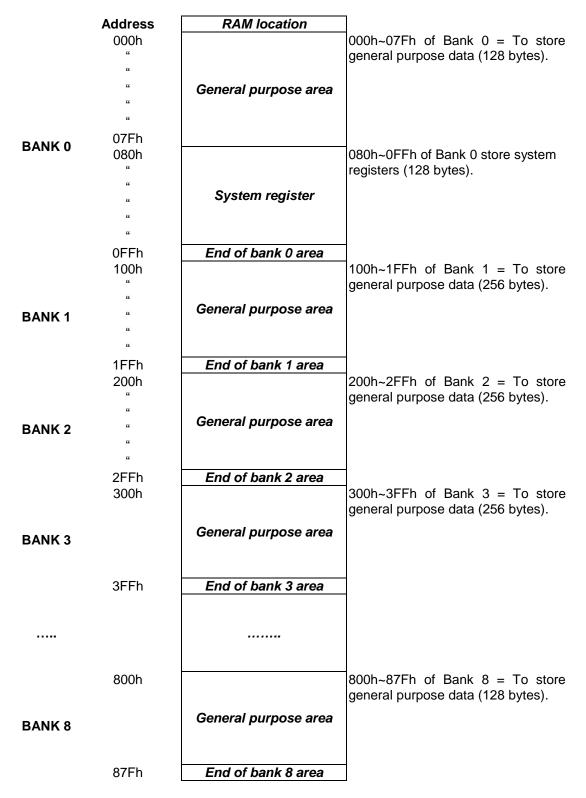
//"BOADD PCL,A" instruction in ROM ADDRESS PCL=0xFC. //After executing BOADD instruction, jump to Here2.

> Example: The following @JMP_A_2ADR macro shows a simple method to jump Table.

;	mov	a, #m	//m=0,1,2,(n-1). M<=125
;	@JMP_A_2AD	DR n,MACRO_Buffer	//n=Total commands of jmp table. N<=126
;	jmp	here_0	//m=0
;	jmp	here_1	//m=1
;	jmp	here_2	//m=2
;	jmp	here_3	//m=3
;	jmp	here_4	//m=4
;			

.DATA MACRO_Buffer 1 //Using @JMP_A_2ADR should define this register. ds .CODE mov A,#2 @JMP_A_2ADR 5,MACRO_Buffer //Jmp to here_2 here_0 Jmp here_1 Jmp Jmp here_2 here_3 Jmp jmp here_4

2.7 CODE OPTION TABLE


Code Option	Content	Function Description
	IHRC_16M	Internal 16M RC Oscillator, Pin will be I/O port P55, P56.
	Ext RC	Low cost RC for external high clock oscillator.
		XOUT pin is general purpose I/O pin.
High_Clk	32K X'tal	Low frequency, power saving crystal (e.g. 32.768KHz) for external high
	5217 7 101	clock oscillator.
	12M X'tal	High speed crystal /resonator (e.g. 12MHZ) for external high clock
		oscillator.
	4M X'tal	Standard crystal /resonator (e.g. 4MHZ) for external high clock oscillator.
	Fhosc/1	Instruction cycle is 1 oscillator clocks.
	Fhosc/2	Instruction cycle is 2 oscillator clocks.
Fcpu	Fhosc/4	Instruction cycle is 4 oscillator clocks.
	Fhosc/8	Instruction cycle is 8 oscillator clocks.
	Fhosc/16	Instruction cycle is 16 oscillator clocks.
	Enable	Enable watchdog timer. Watchdog timer stops in power down mode and
	Enable	green mode.
Watch_Dog	Disable	Disable Watchdog function.
	Always_On	Watchdog timer is always on enable even in power down and green
	Always_Oli	mode.
Noise Filter	Enable	Enable Noise Filter function to enhance EMI performance
	Disable	Disable Noise Filter function
Security	Enable	Enable ROM code Security function.
Security	Disable	Disable ROM code Security function.
Low Power	Enable	Enable Low Power function to save Operating current.
LOW FOWER	Disable	Disable Low Power function.
	LVD_L	LVD=2.2V Reset
LVD	LVD_M	LVD=2.2V Reset, 2.4V Indicator by bit LVD24 of PFLAG register
2,0	LVD_H	LVD=2.4V Reset, 3.6V Indicator by bit LVD36 of PFLAG register
	LVD_MAX	LVD=3.6V Reset
External Reset	Enable	Enable External reset de-bounce function.
Length	Disable	Disable External reset de-bounce function.

Note: In high noisy environment, set Watch_Dog as "Always_On" is strongly recommended.

2.8 DATA MEMORY (RAM)

2048X 8-bit RAM

2.8.1 RBANK Register

087H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RBANK	-	-	-	-	RBNKS3	RBNKS2	RBNKS1	RBNKS0
	-	-	-	-	R/W	R/W	R/W	R/W
After reset	-	-	-	-	0	0	0	0

RBANKS[3:0]: RAM Bank select bit.

0000 = RAM Bank0 0001 = RAM Bank1 0010 = RAM Bank2 0011 = RAM Bank3 0100 = RAM Bank4 0101 = RAM Bank5 0110 = RAM Bank6 0111 = RAM Bank7 1000 = RAM Bank8 1111 = RAM Bank15 (LCD RAM)

2.9 SYSTEM REGISTER

2.9.1 SYSTEM REGISTER TABLE

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
8	L	Н	R	Z	Y	Х	PFLAG	RBANK		LCDM	CPM	CPCKS	-	-	-	-
9	STK15L	STK15H	STK14L	STK14H	STK13L	STK13H	STK12L	STK12H	STK11L	STK11H	STK10L	STK10H	STK9L	STK9H	STK8L	STK8H
A	STK7L	STK7H	STK6L	STK6H	STK5L	STK5H	STK4L	STK4H	STK3L	STK3H	STK2L	STK2H	STK1L	STK1H	STK0L	STK0H
В	-	ADM	ADB	ADR	SIOM	SIOR	SIOB		P0M	PGIA2CKS	PGIA2M	PGIA1CKS	PGIA1M	OPM	P4CON	PEDGE
С	P1W	P1M	P2M	-	P4M	P5M	INTRQ1	INTEN1	INTRQ0	INTEN0	OSCM	-	WDTR	TC0R	PCL	PCH
D	P0	P1	P2	-	P4	P5	T1M	T1C	TOM	TOC	TC0M	TC0C	TC1M	TC1C	TC1R	STKP
E	POUR	P1UR	P2UR	-	P4UR	P5UR	@HL	@YZ	-	P10C	T2M	T2CL	T2CH	CPT2M	CPT2CL	CPT2CH
F	URRX	URTX	URCR	UTXD	URXD	INTRQ2	INTEN2	DAM	DABL	DABH	T3M	T3CL	T3CH	CPT3M	CPT3CL	CPT3CH

2.9.2 SYSTEM REGISTER DESCRIPTION

- L, H = Working & @HL addressing register
- Y, Z = Working, @YZ and ROM addressing register
- PFLAG = ROM page and special flag register
- LCDM1 = LCD mode register
- CPCKS = Charge-Pump Regulator clock selection
- PGIAM = PGIA mode and gain register
 - ADM = ADC mode register
 - ADR = ADCs resolution selects register
 - PNM = Port N input/output mode register
 - PN = Port N data buffer
- INTEN = Interrupt enable register
 - T0M = Timer 0 mode register
 - TOC = Timer 0 counting register
- TC1M = Timer/Counter 1 mode register
- TC1C = Timer/Counter 1 counting register
- STKP = Stack pointer buffer
- @HL = RAM HL indirect addressing index pointer
- P4CON= Port 4 configuration setting

- R = Working register and ROM look-up data buffer
- OPTION= RTC and RCLK options.
- RBANK= RAM bank select register
- PGIACKS = PGIA clock selection
 - CPM = Charge pump mode
 - OPM = OPA mode register
 - ADB = ADC data buffer
 - P1W = Port 1 wakeup register
 - PNUR = Port N pull-up register
 - INTRQ = Interrupt request register
- OSCM = Oscillator mode register
- PCH, PCL = Program counter
 - TC0M = Timer/Counter 0 mode register
 - TC0C = Timer/Counter 0 counting register
 - TC0R = Timer/Counter 0 auto-reload data buffer
 - @YZ = RAM YZ indirect addressing index pointer

2.9.3 BIT DEFINITION of SYSTEM REGISTER

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Name
080H	LBIT7	LBIT6	LBIT5	LBIT4	LBIT3	LBIT2	LBIT1	LBIT0	R/W	L
081H	HBIT7	HBIT6	HBIT5	HBIT4	HBIT3	HBIT2	HBIT1	HBIT0	R/W	Н
082H	RBIT7	RBIT6	RBIT5	RBIT4	RBIT3	RBIT2	RBIT1	RBIT0	R/W	R Z Y
083H	ZBIT7	ZBIT6	ZBIT5	ZBIT4	ZBIT3	ZBIT2	ZBIT1	ZBIT0	R/W	Z
084H	YBIT7	YBIT6	YBIT5	YBIT4	YBIT3	YBIT2	YBIT1	YBIT0	R/W	
085H	XBIT7	XBIT6	XBIT5	XBIT4	XBIT3	XBIT2	XBIT1	XBIT0	R/W	Х
086H	NT0	NPD	LVD36	LVD24	-	С	DC	Z	R/W	PFLAG
087H	-	-	-	-	RBNKS3	RBNKS2	RBNKS1	RBNKS0	R/W	RBANK
088H										
089H	RES1	RES0	-	-	RCLK	P2SEG		LCDENB	R/W	LCDM
08AH			-	-			AREGEN2	AREGEN1	R/W	СРМ
08BH							CPCKS1	CPCKS0	R/W	CPCKS
08CH										
08DH										
08EH										
08FH										
090H	S15PC7	S15PC6	S15PC5	S15PC4	S15PC3	S15PC2	S15PC1	S15PC0	R/W	STK15L
091H	-	S15PC14	S15PC13	S15PC12	S15PC11	S15PC10	S15PC9	S15PC8	R/W	STK15H
092H	S14PC7	S14PC6	S14PC5	S14PC4	S14PC3	S14PC2	S14PC1	S14PC0	R/W	STK14L
093H	-	S14PC14	S14PC13	S14PC12	S14PC11	S14PC10	S14PC9	S14PC8	R/W	STK14H
094H	S13PC7	S13PC6	S13PC5	S13PC4	S13PC3	S13PC2	S13PC1	S13PC0	R/W	STK13L
095H	-	S13PC14	S13PC13	S13PC12	S13PC11	S13PC10	S13PC9	S13PC8	R/W	STK13H
096H	S12PC7	S12PC6	S12PC5	S12PC4	S12PC3	S12PC2	S12PC1	S12PC0	R/W	STK12L
097H	-	S12PC14	S12PC13	S12PC12	S12PC11	S12PC10	S12PC9	S12PC8	R/W	STK12H
098h	S11PC7	S11PC6	S11PC5	S11PC4	S11PC3	S11PC2	S11PC1	S11PC0	R/W	STK11L
099H	-	S11PC14	S11PC13	S11PC12	S11PC11	S11PC10	S11PC9	S11PC8	R/W	STK11H
09AH	S10PC7	S10PC6	S10PC5	S10PC4	S10PC3	S10PC2	S10PC1	S10PC0	R/W	STK10L
09BH	-	S10PC14	S10PC13	S10PC12	S10PC11	S10PC10	S10PC9	S10PC8	R/W	STK10H
09CH	S9PC7	S9PC6	S9PC5	S9PC4	S9PC3	S9PC2	S9PC1	S9PC0	R/W	STK9L
09DH	-	S9PC14	S9PC13	S9PC12	S9PC11	S9PC10	S9PC9	S9PC8	R/W	STK9H
09EH	S8PC7	S8PC6	S8PC5	S8PC4	S8PC3	S8PC2	S8PC1	S8PC0	R/W	STK8L
09FH	-	S8PC14	S8PC13	S8PC12	S9PC11	S8PC10	S8PC9	S8PC8	R/W	STK8H
0A0H	S7PC7	S7PC6	S7PC5	S7PC4	S7PC3	S7PC2	S7PC1	S7PC0	R/W	STK7L
0A1H	-	S7PC14	S7PC13	S7PC12	S7PC11	S7PC10	S7PC9	S7PC8	R/W	STK7H STK6L
0A2H	S6PC7	S6PC6 S6PC14	S6PC5	S6PC4	S6PC3	S6PC2	S6PC1	S6PC0	R/W	STK6H
0A3H	S5PC7	S5PC14 S5PC6	S6PC13 S5PC5	S6PC12 S5PC4	S6PC11 S5PC3	S6PC10 S5PC2	S6PC9 S5PC1	S6PC8 S5PC0	R/W R/W	STK5L
0A4H 0A5H	30FC/	S5PC14	S5PC13	S5PC4 S5PC12	S5PC3	S5PC10	S5PC1	S5PC0	R/W	STK5L
0A6H	S4PC7	S4PC6	S4PC5	S4PC4	S4PC3	S4PC2	S4PC1	S4PC0	R/W	STK4L
0A011 0A7H	54607	S4PC14	S4PC13	S4PC12	S4PC11	S4PC10	S4PC1 S4PC9	S4PC8	R/W	STK4L
0A8h	S3PC7	S3PC6	S3PC5	S3PC4	S3PC3	S3PC2	S3PC1	S3PC0	R/W	STK3L
0A9H		S3PC14	S3PC13	S3PC12	S3PC11	S3PC10	S3PC9	S3PC8	R/W	STK3H
0AAH	S2PC7	S2PC6	S2PC5	S2PC4	S2PC3	S2PC2	S2PC1	S2PC0	R/W	STK2L
0AAH 0ABH	-	S2PC14	S2PC13	S2PC4	S2PC3	S2PC2 S2PC10	S2PC1 S2PC9	S2PC0 S2PC8	R/W	STK2L
0ABH 0ACH	S1PC7	S1PC6	S1PC5	S1PC4	S1PC3	S1PC2	S1PC1	S1PC0	R/W	STK1L
0ACH 0ADH	-	S1PC14	S1PC13	S1PC12	S1PC11	S1PC10	S1PC9	S1PC8	R/W	STK1L
0AEH	S0PC7	S0PC6	S0PC5	S0PC4	S0PC3	S0PC2	S0PC1	S0PC0	R/W	STKOL
0AFH	-	S0PC14	S0PC13	S0PC12	S0PC11	S0PC10	S0PC9	S0PC8	R/W	STKOH
0B0H				001 012			201 00		,	
0B0H	ADENB	ADS	EOC	GCHS	LVBAT	CHS2	CHS1	CHS0	R/W	ADM
0B1H 0B2H	ADENB ADB11	ADS ADB10	ADB9	ADB8	ADB7	ADB6	ADB5	ADB4	R	ADN
0B2H	ADDIT	ADCKS2	ADD3 ADCKS1	ADCKS0	ADB7 ADB3	ADB0 ADB2	ADB3 ADB1	ADB4 ADB0	R/W	ADR
0B3H 0B4H	SENB	START	SRATE1	SRATE0	MLSB	SCKMD	CPOL	CPHA	R/W	SIOM
0B4H 0B5H	SIOR7	SIOR6	SIOR5	SIOR4	SIOR3	SIOR2	SIOR1	SIOR0	R/W	SIOR
0B6H	SIOR7	SIOR6	SIOR5	SIOR4 SIOB4	SIOR3	SIOR2	SIOR1	SIOR0	R/W	SIOR
0B7H	0.001	2,000	0.000	0.004	0.000	21002	0.001	0.000		
0B8h							P01M	P00M	R/W	POM
0B9H	PGIA2CK	PGIA2CK	PGIA2CK	PGIA2CK	PGIA2CKS3	PGIA2CK		PGIA2CKS0		PGIA2CKS
00011	S7	S6	S5	S4		S2	S1			
0BAH	P4GS3	P4GS2	P4GS1	P4GS0	-	P3GS1	P3GS0	PGIA2ENB	R/W	PGIA2M
OBBH	PGIA1CK	PGIA1CK	PGIA1CK		PGIA1CKS3			PGIA1CKS0		PGIA1CKS
	S7	S6	S5	S4	2	S2	S1			
0BCH	P2GS3	P2GS2	P2GS1	P2GS0	-	P1GS1	P1GS0	PGIA1ENB	R/W	PGIA1M
0BDH	-	-	-	-	OP2UGB	OP1UGB	OP2ENB	OP1ENB	R/W	OPM
OBEH	-	P4CON6	P4CON5	P4CON4	P4CON3	P4CON2	P4CON1	P4CON0	W	P4CON
0BFH	-	-	-	-	P01G1	P01G0	P00G1	P00G0	R/W	PEDGE
				L	10101	10100	1 3001		1 1/ 1 1	II. 2202

SONiX TECHNOLOGY CO., LTD

8-Bit MCU build-in 12-bit ADC + PGIA + Charge-pump Regulator + 144 dots LCD driver

DCTH C F130 F1300 F130 F130 F	0C0H			P15W	P14W	P13W	P12W	P11W	P10W	W	P1W
OC2H Paim Paim <th< td=""><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></th<>		-	-			-					
0C3H P46M P43M P44M P43M P44M P53M P52M P51M P50M RW P54M P54D P54 <		-	-	FIJIVI	F 14IVI						
OC4H P46M P46M P46M P43M P41M P41M P40M RW P44M OC5H . P5IRO <						PZSIVI	PZZIVI	PZTIVI	PZUIVI	R/W	PZIVI
CCH - P56M P56M P52M P51M P50M P50M P50M P6M CCH SIOIRA ADCIEN P15IEN P14IRQ P13IRO P12IRO P10IRO R/W INTRO1 CCH SIOIRA ADCIEN P15IEN P14IRO P13IRO P12IRO P10IRO R/W INTRO1 CCH TCIIRO TCOIRO T11RO TOIRO RXIRO TXIRN P01IRO R/W R/W NTRO0 OCCH TCOIRO TTIEN TOIRO RXIRO TXIRN P01IRO R/W R/U R/W R/U R/W R/U R/W R/W R/U R/W R/W R/W R/W R/W R/W R/U R/W R/U R/W R/U			5.00.0			B ist	D. Lake		5.014	5.444	
COEH SIGIRQ ADCIRO P13IRQ P12IRQ P11IRQ P10IRD RAW INTRO1 CC2H SIGIRA ADCIRQ T11IRQ T01RRQ RNIRQ TXIRQ P01IRQ P00IRD RAW INTRO1 OCCH TCIIRQ TCIIRQ T01RD TXIRQ P01IRQ P00IRD RAW INTRO1 OCCH TCIIRN TCIRN TCORN											
GC7H SIOIEN ADCIEN P13EN P13EN P12EN P11EN P10EN R/W INTEN0 GC8H TC1IRD TC0IRO TIKIRO TIKIRO P01RO P01RO R/W NORRO GC8H TC1IRD TC0IEN TILEN TOIRO RXIRD TSRR P01RO R/W R/W P		-									
OC6H TC1IRQ TOIRQ TOIRQ RAWE TAIRQ POIRQ POOIRQ RAW INTROD 0CAH - - CPUMI CPUMO CLKMD STPHX - RAW INTROD 0CCH WOTR7 WOTR6 WOTR5 WOTR3 WOTR3 WOTR1 WOTR1 WOTR0 RAW NOTR0 0CCH TORF TOR6 TOR6 TORS1 TOR2 TOR1 WOTR0 WOTR3 0CCH PCR7 PC6 PC5 PC4 PC3 PC2 PC1 RAW PC1 PC1 PC1 PC1 RAW PC1 PC2 PC1 PC1 RAW PC1 PC2 PC1 PC1 PC1 RAW PC1 PC1 PC1 RAW PC1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>INTRQ1</td></td<>											INTRQ1
OC0H TOTIEN TOTEN TATEN POTEN POTEN POTEN PAN INTENO OCAH - - CPUM0 CLKMD STPHK - RW OSCM OCCH WDTR7 WDTR6 WDTR3 WDTR2 WDTR1 WDTR0 WW PCL OCCH TOOR7 TOOR6 TOOR5 TOOR4 TOOR3 TOOR0 W TOOR OCCH PC7 PC6 PC6 PC6 PC7 PC6 PC8 PC1 PC1 PC1 PC1 PC1 RW PC1 ODDH - P15 P14 P13 P12 P11 P10 RW P1 OD2H - P55 P54 P53 P52 P51 P50 RW P1 OD3H - P56 P54 P53 P52 P54 P53 P52 P54 P50 RW TOC OD4H TOC62 TOC65 TOC61 <td< td=""><td>0C7H</td><td>SIOIEN</td><td>ADCIEN</td><td>P15IEN</td><td>P14IEN</td><td>P13IEN</td><td>P12IEN</td><td>P11IEN</td><td>P10IEN</td><td>R/W</td><td>INTEN1</td></td<>	0C7H	SIOIEN	ADCIEN	P15IEN	P14IEN	P13IEN	P12IEN	P11IEN	P10IEN	R/W	INTEN1
CCH · · CPUM CPUM CLMD STPHX · RW DSCM 0CCH WDTR5 WDTR5 WDTR5 WDTR2 WDTR1 WDTR0 RW WDTR 0CCH TCOR7 TCOR6 TCOR5 TCOR4 TCOR1 TCOR0 W TCOR0 0CCH PC07 PC6 PC6 PC4 PC3 PC2 PC1 PC0 RW PC1 0CH · P15 P14 P13 P12 P11 P10 RW P2 0D3H · P15 P14 P13 P12 P21 P20 RW P2 0D3H · P46 P45 P44 P43 P42 P41 P40 RW P6 0D4H P46 P45 P44 P43 P42 P41 P40 RW P6 0D4H TCR5 Trate2 Trate1 Trate2 Trate1 RCR RCR	0C8H	TC1IRQ	TC0IRQ	T1IRQ	T0IRQ	RXIRQ	TXIRQ	P01IRQ	P00IRQ	R/W	INTRQ0
OCBH WOTR3 WOTR3 WOTR3 WOTR3 WOTR0 W WOTR0 W WOTR0 OCCH TCOR6 TCOR6 TCOR4 TCOR2 TCOR1 TCOR0 W TCOR0 OCCH PC7 PC6 PC6 PC6 PC6 PC6 PC6 PC6 PC7 PC6 PC6 PC7 PC6 PC8 PW PC1 ODDH - PC14 PC13 PC12 PC11 PC10 PC8 PW PC4 ODDH - P15 P14 P13 P12 P11 P10 RW P1 OD3H - P23 P22 P21 P20 RW P2 OD3H - P66 P55 P54 P53 P52 P51 P50 RW P11 RW RW TC0 RW TC0 RW TC0 RW TC0 TC0 RW TC0 TC0 TC0 TC0 TC0 TC0 <t< td=""><td>0C9H</td><td>TC1IEN</td><td>TC0IEN</td><td>T1IEN</td><td>T0IEN</td><td>RXIEN</td><td>TXIEN</td><td>P01IEN</td><td>P00IEN</td><td>R/W</td><td>INTEN0</td></t<>	0C9H	TC1IEN	TC0IEN	T1IEN	T0IEN	RXIEN	TXIEN	P01IEN	P00IEN	R/W	INTEN0
OCBH WOTR3 WOTR3 WOTR3 WOTR3 WOTR0 W WOTR OCCH TOORA TOORA TOORA TOORA TOORA TOORA WOTR3 WOTR3 WOTR3 WOTR0 W W WORR OCCH PC7 PC6 PC6 PC6 PC6 PC6 PC7 PC6 PC8 PW PC1 ODDH - PC14 PC13 PC12 PC11 PC10 PC3 PC2 PC4 PW PC4 ODDH - P15 P14 P13 P12 P11 P10 R/W P2 OD3H - P26 P54 P53 P52 P51 P50 R/W P2 OD4H T1C7 T1C6 T1C6 T1C6 T1C6 T1C3 T1C2 T1C1 R/W R/W T0M OD4H T0C7 TOC6 TOC5 TOC3 TOC3 TOC2 TOC1 TOC0 R/W TOC TOCA	0CAH	-	-	-	CPUM1	CPUM0	CLKMD	STPHX	-	R/W	OSCM
OCCH WDTR5 WDTR4 WDTR2 WDTR1 WDTR1 WDTR0 R/W WDTR OCCH TOORA TCORA TCORA <td></td>											
OCDH TCOR TCORA T		WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	WDTR0	R/W	WDTR
CCEH PC2 PC3 PC2 PC1 PC0 RW PCL OCFH . PC14 PC13 PC12 PC11 PC10 PC9 PC8 RW PCH OD0H . . P14 P13 P12 P11 P10 RW P1 OD2H . . P14 P13 P12 P11 P10 RW P1 OD3H . . P14 P13 P12 P11 P10 RW P2 OD3H . . P56 P54 P53 P52 P51 P50 RW P1 OD5H . P56 P54 P53 P52 P51 P50 RW T0 OD5H T1C8 T1C6 T1C4 T1C3 T1C1 T1C1 RW T0 RW T0 RW T0 RW T0 RW T0 RW T0 RO RW T0 <td></td>											
OCFH · PC14 PC12 PC11 PC10 PC9 PC8 RW PC0 ODDH - P15 P14 P13 P12 P11 P10 RW P1 OD2H - P25 P22 P21 P20 RW P2 OD3H - P56 P55 P54 P52 P51 P50 RW P4 OD5H - P56 P55 P54 P52 P51 P50 RW P5 OD5H T1C6 T1C64 T1C3 T1C1 T100 RW T0 OD7H T0C6 T0C64 T0C3 T0C21 T0C0 RW T0 0 C0 T0 RW T0 T0 C0 T0 T0 <td></td>											
DDH . P15 P14 P13 P12 P11 P10 RW P1 DD1H . . P15 P14 P13 P12 P21 P20 RW P2 0D3H . . P46 P45 P44 P43 P42 P41 P40 RW P4 0D3H . P56 P55 P54 P53 P52 P51 P50 RW P4 0D5H . P56 P51 T104 T102 T101 T106 RW T1M 0D7H T107 T106 T005 T004 T003 T002 T07 T0766 T005 T004 T002 T000 RW T00 0D8H T007 T006 T005 T004 T003 T002 T000 RW T00											
DD1H - P15 P14 P13 P12 P11 P10 R/W P1 DD2H P23 P22 P21 P20 R/W P2 DD3H P66 P45 P44 P43 P42 P41 P40 R/W P4 DD5H - P56 P54 P53 P52 P51 P50 R/W P4 DD5H T1CB T1c62 T1c64 T1c7 T1c6 T1c7 R/W T1C DD7H T1C6 T1c64 T1c65 T1c64 T0c7 T0c6 T0c64 T0c3 T0c2 T0c1 T0c0 R/W T0C DD4H T0c7 T0c66 T0c65 T0c0c4 T0c03 T0c021 T0c01 R/W T0c0 R/W		-	PC14	PC13	PU12	PCTT	PC10				
DD2H P43 P23 P21 P21 P20 R/W P2 DD3H P46 P45 P44 P43 P42 P41 P40 R/W P4 DD5H P56 P56 P54 P53 P52 P51 P50 R/W P5 DD6H T1CNB Tirate1 Tirate0 T1CX T1C2 T1C1 R/W T1M DD7H T1C7 T1C6 T1C5 T1C4 T1C3 TC2 T1C1 R/W T0M DD8H T0CN T0CNT T0C6 T0C5 T0C4 T0C3 T0C2 T0C0 R/W T0C DD8H TC0C7 T0C66 T0C55 T0C4 T0C3 T0C2 T0C01 R/W T0C DD8H TC1C7 TC166 T01C5 T01C4 T0123 T01C1 T0100 R/W T011 DDDH TC1C7 TC166 T01C15 T0124 T0123 T0121 T0180										-	
D03H P46 P45 P44 P43 P42 P41 P40 R/w P4 D05H P56 P55 P54 P53 P52 P51 P50 R/w P5 D06H T1ENB Tirate2 Tirate1 Tirate0 Tirate0 TirCKS R/w TirC D07H T1C7 T1C6 T1C5 T1C4 T1C3 T1C1 R/w T1C D08H T0RATE2 T0RATE1 T0RATE1 T0RATE1 T0RATE1 T0RATE1 T0RATE T0C3 T0C4 T0C3 T0C4 T0C3 T0C4 T0C4 T0C3 T0C4 T0C4 <td< td=""><td>0D1H</td><td>-</td><td>-</td><td>P15</td><td>P14</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	0D1H	-	-	P15	P14						
D0H P46 P45 P43 P42 P41 P40 R/W P4 D05H - P56 P56 P54 P50 R/W P6 0D7H T1CT T10C5 T1C4 T1C3 T1C2 T1C1 T1C0 R/W T1M 0D7H T1C7 T106 T1C5 T1C4 T1C3 T1C2 T1C1 T1C0 R/W T1M 0D9H T0C7 T0C6 T0C5 T0C4 T0C3 T0C02 T0C0 R/W T0C 0D8H T0C7 T0C6 T0C5 T0C4 T0C3 T0C2 T0C0 R/W T0C 0D8H T0C67 T0C66 T0C55 T0C4 T0C3 T0C02 T0C0 R/W T0C 0D5H TC1C7 TC166 T0155 T014 T0123 T0122 T011 T0100 R/W T01R R/W T01R R/W T01R T01R T01R T01R T01R <	0D2H					P23	P22	P21	P20	R/W	P2
DD5H - P56 P57 P51 P50 RW P55 D06H T1ENB T1ratel	0D3H										
DD5H - P56 P57 P51 P50 RW P55 D06H T1ENB T1ratel	0D4H		P46	P45	P44	P43	P42	P41	P40	R/w	P4
D06H T1tabel T1rate0 T1CKS P RW T1M D07H T1C7 T1C6 T1C5 T1C4 T1C3 T1C2 T1C1 T1C0 R/W T1C D09H T0C7 T0C6 T0C5 T0C4 T0C3 T0C2 T0C1 T0C0 R/W T0C D0AH TCOENB TCORATE TCORATE <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-									
DD7H T1C7 T1C6 T1C3 T1C2 T1C1 T1C0 RW T1C DD8H T0RATE2 T0RATE2 T0RATE1 T0C1 T0C0 R/W T0C 0D9H TC0C7 TC0C6 TC0C5 TC0C4 TC0C3 TC0C1 TC0C0 R/W T0C0 0DCH TC1ENB TC1RATE TC1RATE TC1C4 TC1C3 TC1C2 TC1C1 TC1C0 R/W TC1C 0DDH TC1C7 TC166 TC165 TC1C4 TC1R3 TC1R2 TC1R1 TC1R0 R/W TC1R 0DFH GIE - - STKPB4 STKPB3 STKPB3 STKPB4		T1FNR									
D0BH T0ENB T0RATE1 T0RATE1 <tht0rate1< th=""> <tht0rate1< th=""> <tht0rate< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>T1C2</td><td>T1C1</td><td>T1C0</td><td>-</td><td></td></tht0rate<></tht0rate1<></tht0rate1<>							T1C2	T1C1	T1C0	-	
D09H T0C7 T0C8 T0C2 T0C1 T0C0 R/W T0C 0DAH TC0ENB TC0RATE TC0RATE TC0RATE TC0CKS AL0AD0 TC0OUT PWM0OUT R/W TCCM 0DBH TC0C7 TC0C6 TC0C4 TC0C3 TC0C2 TC0C1 TC0C0 R/W TC0C 0DCH TC1ENB TC1RATE TC1RATE TC1RATE TC1C4 TC1C3 TC1C1 R/W TC1C 0DDH TC1C7 TC1C6 TC1C5 TC1C4 TC1C3 TC1C1 TC1C0 R/W TC1C 0DDH TC1C7 TC1R6 TC1R5 TC1R4 TC1R3 TC1R2 TC1R1 TC1R0 W TC1R 0DFH GIE - STKPB4 STKPB3 STKPB2 STKPB1 STKPB0 R/W PUR POR											
ODAH TCOENB TCORATE TCORATE TCORATE TCORATE TCORATE TCOCKS ALOAD0 TCOUT PWM0OUT R/W TCOM ODBH TCOC7 TCOC6 TCOC5 TCOC4 TCOC3 TCOC2 TCOC1 TCOC0 R/W TCOC ODDH TCIC7 TCIC6 TCIC65 TCIC4 TCIC3 TCIC10 PVMMOUT R/W TCIC ODDH TCIC7 TCIC6 TCIC65 TCIC4 TCIC3 TCIC11 TCIC00 R/W TCIC ODEH TCIC7 TCIC6 TCIC5 TCIC4 TCIC3 TCIC11 TCIR0 W TCIR TCIR <td></td>											
2 1 0											
ODBH TC0C7 TC0C6 TC0C4 TC0C3 TC0C4 TC0C1 TC0C0 RW TC0C ODCH TC1ENB TC1RATE TC1RATE TC1RATE TC1RATE TC1CAS ALOAD1 TC1OUT PWM10UT RW TC1M ODDH TC1C7 TC166 TC1CS TC1C4 TC1R3 TC1R2 TC1R1 TC1C0 RW TC1C ODEH GIE - STKPB4 STKPB3 STKPB0 RW STKP ODEH GIE - STKPB4 STKPB3 STKPB0 RW PUR OE0H - - P13R P12R P11R P00R W P0UR 0E3H - - P13R P12R P11R P40R W P4UR 0E5H - P56R P54R P43R P42R P41R P40R W P4UR 0E5H - P56R P54R P53R P52R P51R P50R W	UDAH	I CUENB				TCUCKS	ALOADU	10001	PWM0001	R/W	I COM
ODCH TC1ENB TC1RATE TC1RATE TC1RATE TC1RATE TC1CKS ALOAD1 TC1OUT PWM10UT R/W TC1M 0DDH TC1C7 TC1C6 TC1C5 TC1C4 TC1R3 TC1R2 TC1C1 TC1C0 R/W TC1C 0DFH GIE - STKPB4 STKPB3 STKPB2 STKPB0 R/W P01R P00R W P00R P00R <t< td=""><td>00011</td><td>T0007</td><td></td><td>-</td><td></td><td>TODOO</td><td>T0000</td><td>T0004</td><td>TODOO</td><td>DAA</td><td>7000</td></t<>	00011	T0007		-		TODOO	T 0000	T 0004	TODOO	DAA	7000
2 1 0 - - - - - - 0DDH TC1C7 TC1C6 TC1C85 TC1R4 TC1R3 TC1R2 TC1R1 TC1R0 W TC1R 0DFH GIE - STKPB4 STKPB3 STKP2 STKP1 STKP80 R/W STKP 0E0H - - P13R P12R P11R P00R W P0UR 0E1H - - - P13R P12R P11R P00R W P0UR 0E3H - - P13R P12R P11R P00R W P2UR 0E3H - - P33R P22R P41R P40R W P4UR 0E5H - P56R P55R P54R P53R P52R P51N P50N W P4UR 0E5H - P50R P510C P100C P100C P100C P10C R/W Q1U <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
ODDH TC1C7 TC1C6 TC1C5 TC1C4 TC1C3 TC1C2 TC1C1 TC1C0 RW TC1C ODFH GIE - STKPB4 STKPB3 STKPB1 STKPB0 RVW STKP 0E0H - STKPB4 STKPB2 STKPB1 STKPB0 RVW STKP 0E0H - - P13R P12R P11R P10R W P0UR 0E1H - - P13R P12R P11R P10R W P10R 0E3H - - P33R P22R P21R P20R W P20R 0E6H - P56R P55R P54R P53R P51R P50R W P50R W P10R 0RW Q1R	0DCH	TC1ENB				TC1CKS	ALOAD1	TC10UT	PWM10UT	R/W	TC1M
ODEH TC1R7 TC1R6 TC1R5 TC1R4 TC1R3 TC1R2 TC1R1 TC1R0 W TC1R ODFH GIE - - STKPB4 STKPB3 STKPB2 STKPB1 STKPB0 R/W R/W POR 0E0H - - - P13R P12R P11R P10R W P2UR 0E3H - - - P13R P12R P11R P10R W P2UR 0E3H - - P46R P45R P44R P43R P42R P41R P40R W P4UR 0E3H - P56R P55R P54R P53R P51R P50R W P50R W P50R W P50R W P50R W P50R W					-						
ODFH GIE - STKPB4 STKPB3 STKPB2 STKPB1 STKPB0 R/W STKP 0E0H P11R P00R W P0UR 0E1H - - P13R P12R P11R P10R W P1UR 0E2H P23R P22R P11R P20R W P2UR 0E3H P4R P48R P43R P42R P41R P40R W P4UR 0E4H P46R P45R P44R P43R P42R P41R P40R W P4UR 0E5H P56R P55R P54R P53R P52R P51R P50R W P5UR 0E6H @HL7 @HL6 @HL5 @HL4 @HL3 @HL2 @HL1 @HL0 R/W P2UR 0E8H T2CL7 @HL6 @HL5 @HL4 @HL3 @HL7 @HC P10C P10C P10C <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
0E0H P01R P00R W P0UR 0E1H - - P13R P12R P11R P10R W P1UR 0E2H - - P23R P22R P21R P20R W P2UR 0E3H - - P56R P44R P43R P42R P41R P40R W P4UR 0E5H - P56R P56R P54R P53R P52R P51R P50R W P5UR 0E6H @HL7 @HL6 @HL5 @HL4 @H13 @H22 @YZ1 @YZ0 R/W @YZ 0E8H - P520C P510C P500C P130C P120C P100C R/W T2M 0E8H T2C17 T2CL6 T2CL5 T2CL4 T2CL3 T2CL2 T2CH1 T2CH0 R/W T2M 0ECH CPT2C7 CPT2C6 CPT2C5 CPT2C4 CPT2C3 CPT2C3 CPT2C4 R/W <			TC1R6	TC1R5							
0E1H . . P13R P12R P11R P10R W P1UR 0E2H P23R P22R P21R P20R W P2UR 0E3H .	0DFH	GIE	-	-	STKPB4	STKPB3	STKPB2	STKPB1	STKPB0	R/W	STKP
0E1H - - P13R P12R P11R P10R W P1UR 0E2H P23R P22R P21R P20R W P2UR 0E3H P46R P45R P44R P43R P42R P41R P40R W P2UR 0E3H . P56R P55R P54R P53R P51R P50R W P5UR 0E6H @HL7 @HL6 @HL5 @HL4 @HL3 @HL2 @HL1 @HL0 R/W @HL 0E7H @YZ7 @YZ6 @YZ4 @YZ1 @YZ0 R/W @YZ 0E8H P520C P510C P500C P130C P120C P100C R/W T2M 0E8H T2CL7 T2CL6 T2CL5 T2CL4 T2CL3 T2CL2 T2CH1 T2CH0 R/W T2M 0EBH T2CL7 T2CL6 T2CL5 T2CL4 T2CL2 T2CL1 T2CH	0E0H							P01R	P00R	W	POUR
0E2H P23R P22R P21R P20R W P2UR 0E3H P46R P45R P44R P43R P42R P41R P40R W P4UR 0E4H P56R P55R P54R P53R P52R P51R P50R W P5UR 0E6H @HL7 @HL6 @HL5 @HL4 @HL3 @HL2 @HL1 @HL0 R/W @YZ 0E8H - <t< td=""><td></td><td>-</td><td>-</td><td>-</td><td>_</td><td>P13R</td><td>P12R</td><td></td><td></td><td>W</td><td></td></t<>		-	-	-	_	P13R	P12R			W	
0E3H P46R P45R P44R P43R P42R P41R P40R W P4UR 0E5H - P56R P55R P51R P50R W P40R W P50R W P40R W <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
0E4H P46R P45R P44R P43R P42R P41R P40R W P4UR 0E5H - P56R P55R P54R P53R P52R P51R P50R W P5UR 0E6H @HL7 @HL6 @HL5 @HL4 @HL3 @HL2 @HL1 @HL0 R/W @HL 0E7H @YZ7 @YZ6 @YZ5 @YZ4 @YZ3 @YZ2 @YZ1 @YZ0 R/W @HL 0E8H - - P500C P130C P120C P100C R/W P10C 0E8H T2cL7 T2cte1 T2rate1 T2rate0 T2CKS - R/W T2CL 0ECH T2CL7 T2CH6 T2CL5 T2CH4 T2CL3 T2CH2 T2CH1 T2CH0 R/W T2CH 0ECH CPT2CT7 CP2C6 CPT2C5 CPT2C4 CPT2C3 CPT2C10 CPT2C8 R/W CPT2C4 0F1H UTXEN URXPEN <td></td> <td></td> <td></td> <td></td> <td></td> <td>12010</td> <td>1 2213</td> <td>1211</td> <td>12010</td> <td></td> <td>1201</td>						12010	1 2213	1211	12010		1201
0E5H - P56R P55R P54R P53R P52R P51R P50R W P5UR 0E6H @HL7 @HL6 @HL5 @HL4 @HL3 @HL2 @HL1 @HL0 R/W @HL 0E7H @YZ7 @YZ6 @YZ5 @YZ4 @YZ3 @YZ2 @YZ1 @YZ0 R/W @YZ 0E8H			DAGD	DIED	DAAD	D42D	D42D	D/1D	D40D	10/	
0E6H @HL7 @HL6 @HL5 @HL4 @HL3 @HL2 @HL1 @HL0 R/W @HL 0E7H @YZ7 @YZ6 @YZ5 @YZ4 @YZ3 @YZ2 @YZ1 @YZ0 R/W @YZ 0E8H											
0E7H @YZ7 @YZ6 @YZ5 @YZ4 @YZ3 @YZ2 @YZ1 @YZ0 R/W @YZ 0E8H											
0E8H P520C P510C P500C P130C P120C P110C P100C R/W P10C 0EAH T2ENB T2rate2 T2rate1 T2rate0 T2CKS R/W T2CL0 R/W T2M 0EBH T2CL7 T2CL6 T2CL5 T2CL4 T2CL3 T2CL2 T2CL1 T2CL0 R/W T2CL 0ECH T2CH7 T2CL6 T2CH5 T2CH4 T2CL3 T2CL2 T2CH1 T2CL0 R/W T2CL 0ECH T2CH7 T2CL6 CPT2C5 CPT2C4 CPT2Statt CPT2G1 CPT2G0 R/W CPT2C1 0EEH CPT2C15 CPT2C16 CPT2C13 CPT2C12 CPT2C10 CPT2C9 CPT2C8 R/W CPT2C1 0FH URXEN URXPEN URXPS URXPC1 UFMER URS2 URS1 URS0 R/W URXT 0F1H UTXD7 URCR6 URCR5 URCR4 URCB2 URCR1 URCR0 R/W URXT						@HL3					
0E9H P520C P510C P500C P130C P120C P110C P100C R/W P10C 0EAH T2ENB T2rate2 T2rate1 T2rate0 T2CKS R/W T2M 0EBH T2CL7 T2CL6 T2CL5 T2CL4 T2CL3 T2CL2 T2CL1 T2CL0 R/W T2CL 0ECH T2CH7 T2CL6 T2CL5 T2CL4 T2CH3 T2CL2 T2CH1 T2CL0 R/W T2CL 0ECH T2CH7 T2CH6 T2CH5 T2CL4 T2CH3 T2CL2 T2CH1 T2CH0 R/W T2CL 0EEH CPT2C7 CPT2C6 CPT2C5 CPT2C12 CPT2C11 CPT2C9 CPT2C8 R/W CPT2CH 0F0H URXEN URXPEN URXPS URXPC UFMER URS2 URS1 URS0 R/W URX 0F1H UTXD7 UTXD6 UTXPS UTXD4 UTXD2 UTXD1 UTXD0 R/W URX 0F2H<		@YZ7	@YZ6	@YZ5	@YZ4	@YZ3	@YZ2	@YZ1	@YZ0	R/W	@YZ
0EAH T2ENB T2rate2 T2rate1 T2rate0 T2CKS R/W T2M 0EBH T2CL7 T2CL6 T2CL5 T2CL4 T2CL3 T2CL2 T2CL1 T2CL0 R/W T2CL 0ECH T2CH7 T2CL6 T2CH5 T2CH4 T2CH3 T2CH2 T2CH1 T2CL0 R/W T2CL 0ECH T2CH7 T2CH6 T2CH5 T2CH4 T2CH3 T2CH2 T2CH1 T2CH0 R/W T2CH 0EDH CPT2EN CPT2C5 CPT2C6 CPT2C5 CPT2C4 CPT2C3 CPT2C10 CPT2C0 R/W CPT2CH 0EFH CPT2C15 CPT2C14 CPT2C12 CPT2C10 CPT2C9 CPT2C8 R/W URX 0F1H UTXEN URXPEN UXPS UXPC UFMER URS2 URS1 URS0 R/W URX 0F2H URCR7 URCR6 URCR5 URCR4 URCR3 URCR1 URCR1 URXD0 R/W URXD											
0EBH T2CL7 T2CL6 T2CL5 T2CL4 T2CL3 T2CL2 T2CL1 T2CL0 R/W T2CL 0ECH T2CH7 T2CH6 T2CH5 T2CH4 T2CH3 T2CH2 T2CH1 T2CH0 R/W T2CH 0EDH CPT2EN CPT2C5 CPT2C4 CPT2C3 CPT2C2 CPT2C1 CPT2C0 R/W CPT2L 0EFH CPT2C15 CPT2C14 CPT2C13 CPT2C12 CPT2C10 CPT2C9 CPT2C8 R/W CPT2CH 0F0H URXEN URXPEN URXPS URXPC UFMER URS2 URS1 URS0 R/W URX 0F1H UTXEN UTXPEN UTXPS UTXBK URCR3 URCR2 URCR1 URCR0 R/W URX 0F2H URCR7 URCR6 URCR5 URXD4 UTXD3 UTXD1 UTXD0 R/W URXD 0F3H UTXD7 URXD6 URXD5 URXD4 URXD3 URXD2 URXD1 URXD0							P120C	P110C	P10OC		
0EBH T2CL7 T2CL6 T2CL5 T2CL4 T2CL3 T2CL2 T2CL1 T2CL0 R/W T2CL 0ECH T2CH7 T2CH6 T2CH5 T2CH4 T2CH3 T2CH2 T2CH1 T2CH0 R/W T2CH 0EDH CPT2EN CPT2C5 CPT2C4 CPT2C3 CPT2C2 CPT2C1 CPT2C0 R/W CPT2L 0EFH CPT2C15 CPT2C14 CPT2C13 CPT2C12 CPT2C10 CPT2C9 CPT2C8 R/W CPT2CH 0F0H URXEN URXPEN URXPS URXPC UFMER URS2 URS1 URS0 R/W URX 0F1H UTXEN UTXPEN UTXPS UTXBK URCR3 URCR2 URCR1 URCR0 R/W URX 0F2H URCR7 URCR6 URCR5 URXD4 UTXD3 UTXD1 UTXD0 R/W URXD 0F3H UTXD7 URXD6 URXD5 URXD4 URXD3 URXD2 URXD1 URXD0	0EAH	T2ENB	T2rate2	T2rate1	T2rate0	T2CKS				R/W	T2M
0EDH CPT2EN CPT2C5 CPT2C4 CPT2C3 CPT2C2 CPT2C1 CPT2C0 R/W CPT2C1 0EFH CPT2C15 CPT2C14 CPT2C13 CPT2C12 CPT2C10 CPT2C2 CPT2C3 CPT2C9 CPT2C8 R/W CPT2C1 0EFH CPT2C15 CPT2C14 CPT2C13 CPT2C12 CPT2C11 CPT2C10 CPT2C9 CPT2C8 R/W CPT2CH 0F0H URXEN URXPEN URXPS URXPC UFMER URS2 URS1 URS0 R/W URX 0F1H UTXEN UTXPEN UTXPS UTXBK URXB2 UTXB2 - - R/W URX 0F2H URCR7 URCR6 URCR5 URCR4 URCR3 URCR2 URCR1 URCR0 R/W URX 0F3H UTXD7 UTXD6 UTXD5 UTXD4 UTXD3 UTXD2 UTXD1 UTXD0 R/W URXD 0F4H URXD7 URXD6 URXD5 URXD4 URXD		T2CL7					T2CL2	T2CL1	T2CL0		
0EDH CPT2EN CPT2C5 CPT2C4 CPT2C3 CPT2C2 CPT2C1 CPT2C0 R/W CPT2C1 0EFH CPT2C15 CPT2C14 CPT2C12 CPT2C11 CPT2C10 CPT2C8 R/W CPT2C1 0FH CPT2C15 CPT2C14 CPT2C13 CPT2C12 CPT2C11 CPT2C10 CPT2C9 CPT2C8 R/W CPT2CH 0F0H URXEN URXPEN URXPS URXPC UFMER URS2 URS1 URS0 R/W URXX 0F1H UTXEN UTXPEN UTXPS UTXBRK URXB2 UTXBZ - - R/W URXX 0F2H URCR7 URCR6 URCR5 URCR4 URCR3 URCR2 URCR1 URCR0 R/W URXD 0F3H UTXD7 UTXD6 UTXD5 UTXD4 UTXD3 UTXD2 UTXD1 UTXD0 R/W URXD 0F4H URXD7 URXD6 URXD5 URXD4 URXD3 URXD2 URXD1 URXD	0ECH	T2CH7	T2CH6	T2CH5	T2CH4	T2CH3	T2CH2	T2CH1	T2CH0	R/W	T2CH
0EEH CPT2C7 CPT2C6 CPT2C5 CPT2C4 CPT2C3 CPT2C2 CPT2C1 CPT2C0 R/W CPT2C1 0EFH CPT2C15 CPT2C14 CPT2C13 CPT2C12 CPT2C11 CPT2C10 CPT2C9 CPT2C8 R/W CPT2CH 0F0H URXEN URXPEN URXPS URXPC UFMER URS2 URS1 URS0 R/W URXX 0F1H UTXEN UTXPEN UTXPS UTXBRK URXBZ UTXBZ - - R/W URXX 0F2H URCR7 URCR6 URCR5 URCR4 URCR3 URCR2 URC11 URCR0 R/W URXD 0F3H UTXD7 UTXD6 UTXD5 UTXD4 UTXD3 UTXD2 UTXD1 UTXD0 R/W URXD 0F4H URXD7 URXD6 URXD5 URXD4 URXD3 URXD2 URXD1 URXD0 R/W URXD 0F5H T3IRQ T2IRQ R/W <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CPT2G0</td> <td></td> <td></td>									CPT2G0		
0EFH CPT2C15 CPT2C14 CPT2C13 CPT2C12 CPT2C11 CPT2C10 CPT2C9 CPT2C8 R/W CPT2CH 0F0H URXEN URXPEN URXPS URXPC UFMER URS2 URS1 URS0 R/W URRX 0F1H UTXEN UTXPEN UTXPS UTXBK URXBZ UTXBZ - - R/W URX 0F2H URCR7 URCR6 URCR5 URCR4 URCR3 URCR2 URCR1 URCR0 R/W URX 0F3H UTXD7 UTXD6 UTXD5 UTXD4 UTXD3 UTXD2 UTXD1 UTXD0 R/W URXD 0F4H URXD7 URXD6 URXD5 URXD4 URXD3 URXD2 URXD1 URXD0 R/W UXD 0F5H T3IRQ T2IRQ R/W INTRQ2 0F7H DAEN T3IEN T2IEN R/W INTRQ2	-		CPT2C6	CPT2C5	CPT2C4						
0F0HURXENURXPENURXPSURXPCUFMERURS2URS1URS0R/WURRX0F1HUTXENUTXPENUTXPSUTXBRKURXBZUTXBZR/WURTX0F2HURCR7URCR6URCR5URCR4URCR3URCR2URCR1URCR0R/WURCR0F3HUTXD7UTXD6UTXD5UTXD4UTXD3UTXD2UTXD1UTXD0R/WUTXD0F4HURXD7URXD6URXD5URXD4URXD3URXD2URXD1URXD0R/WURXD0F5HT3IRQT2IRQR/WINTRQ20F6HT3IRNT2IENR/WINTRQ20F7HDAENR/WDAM0F8HR/WDABL0F9HDAB11DAB10DAB9DAB8DAB7DAB6DAB5DAB4WDABH0F8HT3CL7T3CL6T3CL5T3CL4T3CL3T3CL2T3CL1T3CL0R/WT3CL0F6HT3CH7T3CH6T3CH5T3CH4T3CH3T3CH2T3CH1T3CH0R/WT3CH0F0HCPT3ENCPT3MDCPT3G1CPT3G0R/WCPT3M											
0F1HUTXENUTXPENUTXPSUTXBRKURXBZUTXBZ-R/WURTX0F2HURCR7URCR6URCR5URCR4URCR3URCR2URCR1URCR0R/WURCR0F3HUTXD7UTXD6UTXD5UTXD4UTXD3UTXD2UTXD1UTXD0R/WUTXD0F4HURXD7URXD6URXD5URXD4URXD3URXD2URXD1URXD0R/WURXD0F5HT3IRQT2IRQR/WINTRQ20F6HR/WINTRQ20F7HDAENR/WINTEN20F7HDAENR/WINTEN20F7HDAEN </td <td></td>											
0F2HURCR7URCR6URCR5URCR4URCR3URCR2URCR1URCR0R/WURCR0F3HUTXD7UTXD6UTXD5UTXD4UTXD3UTXD2UTXD1UTXD0R/WUTXD0F4HURXD7URXD6URXD5URXD4URXD3URXD2URXD1URXD0R/WURXD0F5HT3IRQT2IRQR/WINTRQ20F6HR/WNTEN20F7HDAENR/WNTEN20F7HDAENR/WDAM0F8HDAB3DAB2DAB1DAB0WDABL0F9HDAB11DAB10DAB9DAB8DAB7DAB6DAB5DAB4WDABH0F8HT3CL7T3CL6T3CL5T3CL4T3CL3T3CL2T3CL1T3CL0R/WT3CL0F6HT3CH7T3CH6T3CH5T3CH4T3CH3T3CH2T3CH1T3CH0R/WT3CH0FDHCPT3ENCPT3MDCPT3StartCPT3G1CPT3G0R/WCPT3M		-						0K21	0K50		
0F3HUTXD7UTXD6UTXD5UTXD4UTXD3UTXD2UTXD1UTXD0R/WUTXD0F4HURXD7URXD6URXD5URXD4URXD3URXD2URXD1URXD0R/WURXD0F5HT3IRQT2IRQR/WINTRQ20F6HT3IENT2IENR/WINTRQ20F7HDAENR/WNTEN20F7HDAENR/WDAM0F8HDAB3DAB2DAB1DAB0WDABL0F9HDAB11DAB10DAB9DAB8DAB7DAB6DAB5DAB4WDABH0FAHT3ENBT3rate2T3rate1T3rate0T3CKSR/WT3M0FBHT3CL7T3CL6T3CL5T3CL4T3CL3T3CL2T3CL1T3CL0R/WT3CL0FCHT3CH7T3CH6T3CH5T3CH4T3CH3T3CH2T3CH1T3CH0R/WT3CH0FDHCPT3ENCPT3MDCPT3StartCPT3G1CPT3G0R/WCPT3M								-	-	-	-
0F4HURXD7URXD6URXD5URXD4URXD3URXD2URXD1URXD0R/WURXD20F5HT3IRQT2IRQR/WINTRQ20F6HT3IENT2IENR/WINTRQ20F7HDAENR/WNTEN20F7HDAENR/WDAM0F8HDAB3DAB2DAB1DAB0WDABL0F9HDAB11DAB10DAB9DAB8DAB7DAB6DAB5DAB4WDABH0FAHT3ENBT3rate2T3rate1T3rate0T3CKSR/WT3M0FBHT3CL7T3CL6T3CL5T3CL4T3CL3T3CL2T3CL1T3CL0R/WT3CL0FCHT3CH7T3CH6T3CH5T3CH4T3CH3T3CH2T3CH1T3CH0R/WT3CH0FDHCPT3ENCPT3MDCPT3StartCPT3G1CPT3G0R/WCPT3M											
0F5HImage: constraint of the systemT3IRQT2IRQR/WINTRQ20F6HImage: constraint of the systemT3IENT2IENR/WINTEN20F7HDAENImage: constraint of the systemDAB3DAB2DAB1DAB0WDAB10F9HDAB11DAB10DAB9DAB8DAB7DAB6DAB5DAB4WDABH0F9HT3ENBT3rate2T3rate1T3rate0T3CKSImage: constraint of the systemT3M0FBHT3CL7T3CL6T3CL5T3CL4T3CL3T3CL2T3CL1T3CL0R/WT3CL0FCHT3CH7T3CH6T3CH5T3CH4T3CH3T3CH2T3CH1T3CH0R/WT3CH0FDHCPT3ENImage: constraint of the systemCPT3MDCPT3StartCPT3G1CPT3G0R/WCPT3M										R/W	
0F6HT3IENT2IENR/WINTEN20F7HDAENDABDAB3DAB2DAB1DAB0WDAB10F8HDAB10DAB9DAB8DAB7DAB6DAB5DAB4WDABH0F9HDAB11DAB10DAB9DAB8DAB7DAB6DAB5DAB4WDABH0FAHT3ENBT3rate2T3rate1T3rate0T3CKSR/WT3M0FBHT3CL7T3CL6T3CL5T3CL4T3CL3T3CL2T3CL1T3CL0R/WT3CL0FCHT3CH7T3CH6T3CH5T3CH4T3CH3T3CH2T3CH1T3CH0R/WT3CH0FDHCPT3ENCPT3MDCPT3StartCPT3G1CPT3G0R/WCPT3M	0F4H	URXD7	URXD6	URXD5	URXD4	URXD3	URXD2	URXD1	URXD0	R/W	URXD
0F6HImage: Constraint of the systemT31ENT21ENR/WINTEN20F7HDAENImage: Constraint of the systemDAB3DAB2DAB1DAB0WDAB10F8HImage: Constraint of the systemDAB1DAB0DAB1DAB0WDAB10F9HDAB11DAB10DAB9DAB8DAB7DAB6DAB5DAB4WDABH0FAHT3ENBT3rate2T3rate1T3rate0T3CKSImage: Constraint of the systemT3M0FBHT3CL7T3CL6T3CL5T3CL4T3CL3T3CL2T3CL1T3CL0R/WT3CL0FCHT3CH7T3CH6T3CH5T3CH4T3CH3T3CH2T3CH1T3CH0R/WT3CH0FDHCPT3ENImage: ConstraintCPT3G1CPT3G0R/WCPT3M	0F5H							T3IRQ	T2IRQ	R/W	INTRQ2
0F7HDAENR/WDAM0F8HDAB1DAB3DAB2DAB1DAB0WDABL0F9HDAB11DAB10DAB9DAB8DAB7DAB6DAB5DAB4WDABH0FAHT3ENBT3rate2T3rate1T3rate0T3CKSR/WT3M0FBHT3CL7T3CL6T3CL5T3CL4T3CL3T3CL2T3CL1T3CL0R/WT3CL0FCHT3CH7T3CH6T3CH5T3CH4T3CH3T3CH2T3CH1T3CH0R/WT3CH0FDHCPT3ENCPT3MDCPT3StartCPT3G1CPT3G0R/WCPT3M	0F6H								T2IEN	R/W	INTEN2
0F8H DAB3 DAB2 DAB1 DAB0 W DABL 0F9H DAB11 DAB10 DAB9 DAB8 DAB7 DAB6 DAB5 DAB4 W DABH 0F9H DAB11 DAB10 DAB9 DAB8 DAB7 DAB6 DAB5 DAB4 W DABH 0FAH T3ENB T3rate2 T3rate1 T3rate0 T3CKS R/W T3M 0FBH T3CL7 T3CL6 T3CL5 T3CL4 T3CL3 T3CL2 T3CL1 T3CL0 R/W T3CL 0FCH T3CH7 T3CH6 T3CH5 T3CH4 T3CH3 T3CH2 T3CH1 T3CH0 R/W T3CH 0FDH CPT3EN CPT3MD CPT3G1 CPT3G0 R/W CPT3M		DAEN					1				
0F9H DAB11 DAB10 DAB9 DAB8 DAB7 DAB6 DAB5 DAB4 W DABH 0FAH T3ENB T3rate2 T3rate1 T3rate0 T3CKS R/W T3M 0FBH T3CL7 T3CL6 T3CL5 T3CL4 T3CL3 T3CL2 T3CL1 T3CL0 R/W T3CL 0FCH T3CH7 T3CH6 T3CH5 T3CH4 T3CH3 T3CH2 T3CH1 T3CH0 R/W T3CH 0FCH T3CH7 T3CH6 T3CH5 T3CH4 T3CH3 T3CH2 T3CH1 T3CH0 R/W T3CH 0FDH CPT3EN CPT3MD CPT3G1 CPT3G0 R/W CPT3M			1	1	1	DAB3	DAB2	DAB1	DAB0		
OFAH T3ENB T3rate2 T3rate1 T3rate0 T3CKS R/W T3M OFBH T3CL7 T3CL6 T3CL5 T3CL4 T3CL3 T3CL2 T3CL1 T3CL0 R/W T3CL OFCH T3CH7 T3CH6 T3CH5 T3CH4 T3CH3 T3CH2 T3CH1 T3CH0 R/W T3CH OFCH T3CH7 T3CH6 T3CH5 T3CH4 T3CH3 T3CH2 T3CH1 T3CH0 R/W T3CH OFDH CPT3EN CPT3MD CPT3Start CPT3G1 CPT3G0 R/W CPT3M		DAR11	DAB10		DAB8						
0FBH T3CL7 T3CL6 T3CL5 T3CL4 T3CL3 T3CL2 T3CL1 T3CL0 R/W T3CL 0FCH T3CH7 T3CH6 T3CH5 T3CH4 T3CH3 T3CH2 T3CH1 T3CH0 R/W T3CH 0FDH CPT3EN CPT3MD CPT3Start CPT3G1 CPT3G0 R/W CPT3M							DABO	DVD0			
0FCH T3CH7 T3CH6 T3CH5 T3CH4 T3CH3 T3CH2 T3CH1 T3CH0 R/W T3CH 0FDH CPT3EN CPT3MD CPT3Start CPT3G1 CPT3G0 R/W CPT3M	-						TOOLO	TOOL	TOOLO		
0FDH CPT3EN CPT3MD CPT3Start CPT3G1 CPT3G0 R/W CPT3M											
			T3CH6	T3CH5	T3CH4						
0FEH CPT3C7 CPT3C6 CPT3C5 CPT3C4 CPT3C3 CPT3C2 CPT3C1 CPT3C0 R/W CPT3CL											
	0FEH	CPT3C7	CPT3C6	CPT3C5	CPT3C4	CPT3C3	CPT3C2	CPT3C1	CPT3C0	R/W	CPT3CL
0FFH CPT3C15 CPT3C14 CPT3C13 CPT3C12 CPT3C11 CPT3C10 CPT3C9 CPT3C8 R/W CPT3CH			CPT3C14							R/W	

• Note:

- 1. To avoid system error, make sure to put all the "0" and "1" as it indicates in the above table.
- 2. All of register names had been declared in SN8ASM assembler.
- 3. One-bit name had been declared in SN8ASM assembler with "F" prefix code.
- 4. "b0bset", "b0bclr", "bset", "bclr" instructions are only available to the "R/W" registers.

2.10 ACCUMULATOR

The ACC is an 8-bit data register responsible for transferring or manipulating data between ALU and data memory. If the result of operating is zero (Z) or there is carry (C or DC) occurrence, then these flags will be set to PFLAG register.

ACC is not in data memory (RAM), so ACC can't be access by "B0MOV" instruction during the instant addressing mode.

> Example: Read and write ACC value.

; Read ACC data and store in BUF data memory

MOV BUF, A

; Write a immediate data into ACC

MOV A, #0FH

; Write ACC data from BUF data memory

MOV A, BUF

2.11 PROGRAM COUNTER

The program counter (PC) is a 15-bit binary counter separated into the high-byte 6 and the low-byte 8 bits. This counter is responsible for pointing a location in order to fetch an instruction for kernel circuit. Normally, the program counter is automatically incremented with each instruction during program execution.

Besides, it can be replaced with specific address by executing CALL or JMP instruction. When JMP or CALL instruction is executed, the destination address will be inserted to bit 0 ~ bit 14.

	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC	-	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
After reset	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				PC	ЭН							P	CL			

ONE INSTRUCTION SKIPPING

There are nine instructions (CMPRS, INCS, INCMS, DECS, DECMS, BTS0, BTS1, B0BTS0, B0BTS1) with one instruction skipping function. If the result of these instructions is true, the PC will skip next instruction.

If the condition of bit test instruction is true, the PC will add 2 steps to skip next instruction.

	B0BTS1 JMP	FC C0STEP	; To skip, if Carry_flag = 1 ; Else jump to C0STEP.
COSTEP:	 NOP		
	BOMOV BOBTSO JMP	A, BUF0 FZ C1STEP	; Move BUF0 value to ACC. ; To skip, if Zero flag = 0. ; Else jump to C1STEP.
C1STEP:	 NOP		
If the ACC is equal	to the imme	diate data or mem	ory, the PC will add 2 steps to skip next instruction.
	CMPRS JMP	A, #12H COSTEP	; To skip, if ACC = 12H. ; Else jump to C0STEP.
COSTEP:	 NOP		
<i>If the destination in instruction.</i>	ncreased by	1, which results o	overflow of 0xFF to 0x00, the PC will add 2 steps to skip next
INCS instruction:	INCS	BUF0	
	JMP	COSTEP	; Jump to COSTEP if ACC is not zero.
COSTEP:	NOP		
INCMS instruction:			
	INCMS JMP 	BUF0 COSTEP	; Jump to C0STEP if BUF0 is not zero.
COSTEP:	NOP		
<i>If the destination de instruction.</i>	ecreased by	1, which results u	Inderflow of 0x00 to 0xFF, the PC will add 2 steps to skip next
DECS instruction:	DECS JMP	BUF0 COSTEP	; Jump to C0STEP if ACC is not zero.
COSTEP:	 NOP		
DECMS instruction			
	DECMS JMP 	BUF0 C0STEP	; Jump to C0STEP if BUF0 is not zero.
COSTEP:	 NOP		

MULTI-ADDRESS JUMPING

The jump table operation is one of multi-address jumping function. Add low-byte program counter (PCL) and ACC value to get one new PCL. The new program counter (PC) points to a series jump instructions as a listing table. It is easy to make a multi-jump program depends on the value of the accumulator (A).

Program counter will occur ERROR when executing PCL addition instruction (B0ADD/ADD/ADC PCL,A) in ROM Address PCL=0xFD or 0xFE.

If the instruction (B0ADD/ADD/ADC PCL,A) in ROM Address =(xxxxFD) or(xxxxFE) , user have to move the instruction (B0ADD/ADD/ADC PCL,A) to the top of next program memory page (xxxx00H).

Here one page mean 256 words.

- Note: Program counter will occur ERROR when executing PCL addition instruction (B0ADD/ADD/ADC PCL,A) in ROM Address PCL=0xFD or 0xFE.
- * Note: "Jmp" and "CALL" instruction length = 2 machine word (2 ROM Address).
- * Note: Please refer to the "2.6 JUMP TABLE DESCRIPTION" about jump table application.

2.12 PROGRAM FLAG

The PFLAG register contains the arithmetic status of ALU operation, system reset status and LVD detecting status. NTO, NPD bits indicate system reset status including power on reset, LVD reset, reset by external pin active and watchdog reset. C, DC, Z bits indicate the result status of ALU operation. LVD24, LVD36 bits indicate LVD detecting power voltage status.

086H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PFLAG	NT0	NPD	LVD36	LVD24	-	С	DC	Z
Read/Write	R/W	R/W	R	R	-	R/W	R/W	R/W
After reset	-	-	0	0	-	0	0	0

Bit [7:6] NT0, NPD: Reset status flag.

NT0	NPD	Reset Status
0	0	Watch-dog time out
0	1	Reserved
1	0	Reset by LVD
1	1	Reset by external Reset Pin

- Bit 5 **LVD36:** LVD 3.6V operating flag and only support LVD code option is LVD_H.
 - 0 =Inactive (DVDD > 3.6V).

 $1 = \text{Active (DVDD} \le 3.6\text{V}).$

- Bit 4 **LVD24:** LVD 2.4V operating flag and only support LVD code option is LVD_M. 0 = Inactive (DVDD > 2.4V).
 - $1 = \text{Active (DVDD} \le 2.4\text{V}).$

Bit 2 C: Carry flag

- 1 = Addition with carry, subtraction without borrowing, rotation with shifting out logic "1", comparison result ≥ 0 .
- 0 = Addition without carry, subtraction with borrowing signal, rotation with shifting out logic "0", comparison result < 0.
- Bit 1 DC: Decimal carry flag
 - 1 = Addition with carry from low nibble, subtraction without borrow from high nibble.
 - 0 = Addition without carry from low nibble, subtraction with borrow from high nibble.

Bit 0 Z: Zero flag

- 1 = The result of an arithmetic/logic/branch operation is zero.
- 0 = The result of an arithmetic/logic/branch operation is not zero.

Note: Refer to instruction set table for detailed information of C, DC and Z flags.

2.13 H, L REGISTERS

The H and L registers are the 8-bit buffers. There are two major functions of these registers.

- can be used as general working registers
- can be used as RAM data pointers with @HL register

081H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Н	HBIT7	HBIT6	HBIT5	HBIT4	HBIT3	HBIT2	HBIT1	HBIT0
Read/Write	R/W							
After reset	Х	Х	Х	Х	Х	Х	Х	Х

080H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
L	LBIT7	LBIT6	LBIT5	LBIT4	LBIT3	LBIT2	LBIT1	LBIT0
Read/Write	R/W							
After reset	Х	Х	Х	Х	Х	Х	Х	Х

Example: If want to read a data from RAM address 20H of bank_0, it can use indirectly addressing mode to access data as following.

B0MOV	H, #00H	; To set RAM bank 0 for H register
B0MOV	L, #20H	; To set location 20H for L register
B0MOV	A, @HL	; To read a data into ACC

> Example: Clear general-purpose data memory area of bank 0 using @HL register.

CLR HL BUF:	CLR	H	; H = 0, bank 0
	B0MOV	L, #07FH	; L = 7FH, the last address of the data memory area
	CLR	@HL	; Clear @HL to be zero
	DECMS	L	; L – 1, if L = 0, finish the routine
	JMP	CLR_HL_BUF	; Not zero
END_CLR:	CLR 	@HL	; End of clear general purpose data memory area of bank 0

2.14 Y, Z REGISTERS

The Y and Z registers are the 8-bit buffers. There are three major functions of these registers.

- can be used as general working registers
- can be used as RAM data pointers with @YZ register
- can be used as ROM data pointer with the MOVC instruction for look-up table

084H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Y	YBIT7	YBIT6	YBIT5	YBIT4	YBIT3	YBIT2	YBIT1	YBIT0
Read/Write	R/W							
After reset	-	-	-	-	-	-	-	-

083H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Z	ZBIT7	ZBIT6	ZBIT5	ZBIT4	ZBIT3	ZBIT2	ZBIT1	ZBIT0
Read/Write	R/W							
After reset	-	-	-	-	-	-	-	-

* Note: Please refer to the "2.5 LOOK-UP TABLE DESCRIPTION" about Y/Z register look-up table application.

> Example: Uses Y, Z register as the data pointer to access data in the RAM address 025H of bank0.

B0MOV	Y, #00H	; To set RAM bank 0 for Y register
B0MOV	Z, #25H	; To set location 25H for Z register
B0MOV	A, @YZ	; To read a data into ACC

> Example: Uses the Y, Z register as data pointer to clear the RAM data.

	B0MOV	Y, #0	; Y = 0, bank 0
	B0MOV	Z, #07FH	; Z = 7FH, the last address of the data memory area
CLR_YZ_BUF:	CLR	@YZ	; Clear @YZ to be zero
	DECMS	Z	; Z – 1, if Z= 0, finish the routine
	JMP	CLR_YZ_BUF	; Not zero
END_CLR:	CLR	@YZ	; End of clear general purpose data memory area of bank 0

. . .

2.15 X REGISTERS

X register is an 8-bit buffer. There are two major functions of the register.

- can be used as general working registers
- can be used as ROM data pointer with the MOVC instruction for look-up table

085H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Х	XBIT7	XBIT6	XBIT5	XBIT4	XBIT3	XBIT2	XBIT1	XBIT0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

Note: Please refer to the "2.5 LOOK-UP TABLE DESCRIPTION" about X register look-up table application.

2.16 R REGISTERS

R register is an 8-bit buffer. There are two major functions of the register.

- Can be used as working register
- For store high-byte data of look-up table (MOVC instruction executed, the high-byte data of specified ROM address will be stored in R register and the low-byte data will be stored in ACC).

082H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R	RBIT7	RBIT6	RBIT5	RBIT4	RBIT3	RBIT2	RBIT1	RBIT0
Read/Write	R/W							
After reset	-	-	-	-	-	-	-	-

Note: Please refer to the "2.5 LOOK-UP TABLE DESCRIPTION" about R register look-up table application.

2.17 ADDRESSING MODE

2.17.1 IMMEDIATE ADDRESSING MODE

The immediate addressing mode uses an immediate data to set up the location in ACC or specific RAM.

> Example: Move the immediate data 12H to ACC.

MOV A, #12H ; To set an immediate data 12H into ACC.

> Example: Move the immediate data 12H to R register.

B0MOV R, #12H ; To set an immediate data 12H into R register.

Note: In immediate addressing mode application, the specific RAM must be 0x80~0x87 working register.

2.17.2 DIRECTLY ADDRESSING MODE

The directly addressing mode moves the content of RAM location in or out of ACC.

> Example: Move 0x12 RAM location data into ACC.

B0MOV A, 12H ; To get a content of RAM location 0x12 of bank 0 and save in ACC.

> Example: Move ACC data into 0x12 RAM location.

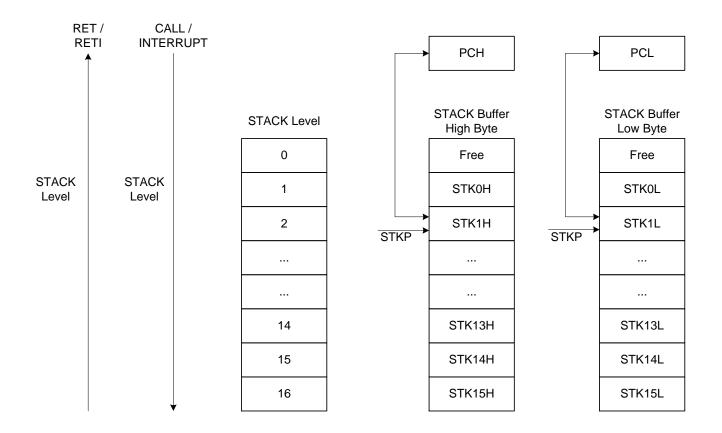
B0MOV 12H, A ; To get a content of ACC and save in RAM location 12H of bank 0.

2.17.3 INDIRECTLY ADDRESSING MODE

The indirectly addressing mode is to access the memory by the data pointer registers (H/L, Y/Z).

> Example: Indirectly addressing mode with @HL register

B0MOV	H, #0	; To clear H register to access RAM bank 0.
B0MOV	L, #12H	; To set an immediate data 12H into L register.
B0MOV	A, @HL	; Use data pointer @HL reads a data from RAM location 012H into ACC.


> Example: Indirectly addressing mode with @YZ register

B0MOV	Y, #0	; To clear Y register to access RAM bank 0.
B0MOV	Z, #12H	; To set an immediate data 12H into Z register.
B0MOV	A, @YZ	; Use data pointer @YZ reads a data from RAM location 012H into ACC.

2.18 STACK OPERATION

2.18.1 OVERVIEW

The stack buffer has 16-level. These buffers are designed to push and pop up program counter's (PC) data when interrupt service routine and "CALL" instruction are executed. The STKP register is a pointer designed to point active level in order to push or pop up data from stack buffer. The STKnH and STKnL are the stack buffers to store program counter (PC) data.

2.18.2 STACK REGISTERS

The stack pointer (STKP) is a 4-bit register to store the address used to access the stack buffer, 15-bit data memory (STKnH and STKnL) set aside for temporary storage of stack addresses.

The two stack operations are writing to the top of the stack (push) and reading from the top of stack (pop). Push operation decrements the STKP and the pop operation increments each time. That makes the STKP always point to the top address of stack buffer and write the last program counter value (PC) into the stack buffer.

The program counter (PC) value is stored in the stack buffer before a CALL instruction executed or during interrupt service routine. Stack operation is a LIFO type (Last in and first out). The stack pointer (STKP) and stack buffer (STKnH and STKnL) are located in the system register area bank 0.

0DFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKP	GIE	-	-	STKPB4	STKPB3	STKPB2	STKPB1	STKPB0
Read/Write	R/W	-	-	R/W	R/W	R/W	R/W	R/W
After reset	0	-	-	1	0	1	1	1

Bit[4:0] **STKPBn:** Stack pointer $(n = 0 \sim 4)$

- Bit 7 GIE: Global interrupt control bit.
 - 0 = Disable.
 - 1 = Enable. Please refer to the interrupt chapter.

* Note: STKP initial value=0x17H.

Example: Stack pointer (STKP) reset, we strongly recommended to clear the stack pointers in the beginning of the program.

MOV	A, #00010111B	;#017H
B0MOV	STKP, A	

090H~0AFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKnH	-	SnPC14	SnPC13	SnPC12	SnPC11	SnPC10	SnPC9	SnPC8
Read/Write	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	-	0	0	0	0	0	0	0
090H~0AFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKnL	SnPC7	SnPC6	SnPC5	SnPC4	SnPC3	SnPC2	SnPC1	SnPC0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0

STKn = STKnH, STKnL ($n = 15 \sim 0$)

2.18.3 STACK OPERATION EXAMPLE

The two kinds of Stack-Save operations refer to the stack pointer (STKP) and write the content of program counter (PC) to the stack buffer are CALL instruction and interrupt service. Under each condition, the STKP decreases and points to the next available stack location. The stack buffer stores the program counter about the op-code address. The Stack-Save operation is as the following table.

Stack Level		S	TKP Regist	er		Stack	Buffer	Description
SIACK Level	STKB4	STKPB3	STKPB2	STKPB1	STKPB0	High Byte	Low Byte	Description
0	1	0	1	1	1	Free	Free	-
1	1	0	1	1	0	STK0H	STK0L	-
2	1	0	1	0	1	STK1H	STK1L	-
3	1	0	1	0	0	STK2H	STK2L	-
4	1	0	0	1	1	STK3H	STK3L	-
5	1	0	0	1	0	STK4H	STK4L	-
6	1	0	0	0	1	STK5H	STK5L	-
7	1	0	0	0	0	STK6H	STK6L	-
8	0	1	1	1	1	STK7H	STK7L	-
9	0	1	1	1	0	STK8H	STK8L	-
10	0	1	1	0	1	STK9H	STK9L	-
11	0	1	1	0	0	STK10H	STK10L	-
12	0	1	0	1	1	STK11H	STK11L	-
13	0	1	0	1	0	STK12H	STK12L	-
14	0	1	0	0	1	STK13H	STK13L	-
15	0	1	0	0	0	STK14H	STK14L	-
16	0	0	1	1	1	STK15H	STK15L	-
> 16	0	0	1	1	0	-	-	Stack Over, error

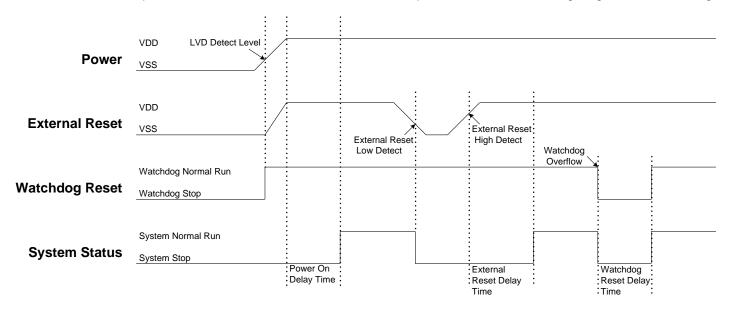
There are Stack-Restore operations correspond to each push operation to restore the program counter (PC). The RETI instruction uses for interrupt service routine. The RET instruction is for CALL instruction. When a pop operation occurs, the STKP is incremented and points to the next free stack location. The stack buffer restores the last program counter (PC) to the program counter registers. The Stack-Restore operation is as the following table.

Stock Loval		S	TKP Regist	er		Stack	Buffer	Description
Stack Level	STKPB4	STKPB3	STKPB2	STKPB1	STKPB0	High Byte	Low Byte	Description
16	0	0	1	1	1	STK15H	STK15L	-
15	0	1	0	0	0	STK14H	STK14L	-
14	0	1	0	0	1	STK13H	STK13L	-
13	0	1	0	1	0	STK12H	STK12L	-
12	0	1	0	1	1	STK11H	STK11L	-
11	0	1	1	0	0	STK10H	STK10L	-
10	0	1	1	0	1	STK9H	STK9L	-
9	0	1	1	1	0	STK8H	STK8L	-
8	0	1	1	1	1	STK7H	STK7L	-
7	1	0	0	0	0	STK6H	STK6L	-
6	1	0	0	0	1	STK5H	STK5L	-
5	1	0	0	1	0	STK4H	STK4L	-
4	1	0	0	1	1	STK3H	STK3L	-
3	1	0	1	0	0	STK2H	STK2L	-
2	1	0	1	0	1	STK1H	STK1L	-
1	1	0	1	1	0	STK0H	STK0L	-
0	1	0	1	1	1	Free	Free	-

3.1 OVERVIEW

The system would be reset in three conditions as following.

- Power on reset
- External reset
- Watchdog reset
- LVD reset (brown-out reset protection)


When any reset condition occurs, all system registers keep initial status, program stops and program counter is cleared. After reset status released, the system boots up and program starts to execute from ORG 0. The NT0, NPD flags indicate system reset status. The system can depend on NT0, NPD status and go to different paths by program.

086H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PFLAG	NT0	NPD	LVD36	LVD24	-	С	DC	Z
Read/Write	R/W	R/W	R	R-	-	R/W	R/W	R/W
After reset	-	-	-	-	-	0	0	0

Bit [7:6] NT0, NPD: Reset status flag.

NT0	NPD	Condition	Description
0	0	Watchdog reset	Watchdog timer overflow.
0	1	Reserved	-
1	0	Power on reset and LVD reset.	Power voltage is lower than LVD detecting level.
1	1	External reset	External reset pin detect low level status.

Finishing any reset sequence needs some time. The system provides complete procedures to make the power on reset successful. For different oscillator types, the reset time is different. That causes the start-up of oscillator is not fixed. RC type oscillator's start-up time is very short, but the crystal type is longer. Under client terminal application, users have to take care the power on reset time for the master terminal requirement. The reset timing diagram is as following.

3.2 POWER ON RESET

The power on reset depend no LVD operation for most power-up situations. The power supplying to system is a rising curve and needs some time to achieve the normal voltage. Power on reset sequence is as following.

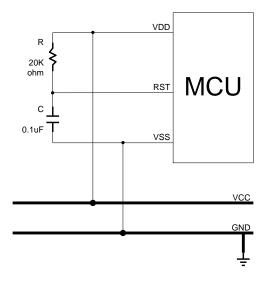
- **Power-up:** System detects the power voltage up and waits for power stable.
- **External reset:** System checks external reset pin status. If external reset pin is not high level, the system keeps reset status and waits external reset pin released.
- **System initialization:** All system registers is set as initial conditions and system is ready.
- Oscillator warm up: Oscillator operation is successfully and supply to system clock.
- **Program executing:** Power on sequence is finished and program executes from ORG 0.

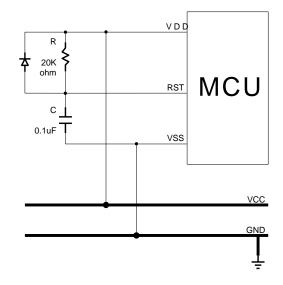
3.3 WATCHDOG RESET

Watchdog reset is a system protection. In normal condition, system works well and clears watchdog timer by program. Under error condition, system is in unknown situation and watchdog can't be clear by program before watchdog timer overflow. Watchdog timer overflow occurs and the system is reset. After watchdog reset, the system restarts and returns normal mode. Watchdog reset sequence is as following.

- Watchdog timer status: System checks watchdog timer overflow status. If watchdog timer overflow occurs, the system is reset.
- **System initialization:** All system registers is set as initial conditions and system is ready.
- Oscillator warm up: Oscillator operation is successfully and supply to system clock.
- **Program executing:** Power on sequence is finished and program executes from ORG 0.

* Note: Please refer to the "WATCHDOG TIMER" about watchdog timer detail information.

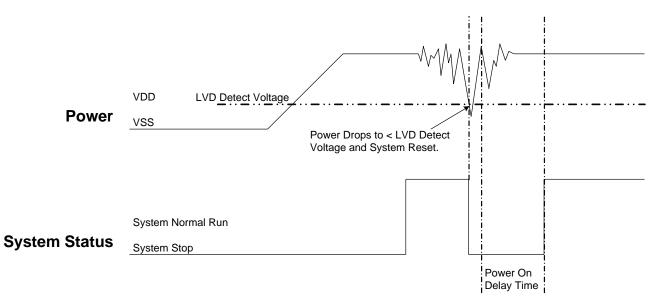

3.4 EXTERNAL RESET


External reset pin is Schmitt Trigger structure and low level active. The system is running when reset pin is high level voltage input. The reset pin receives the low voltage and the system is reset. The external reset operation actives in power on and normal running mode. During system power-up, the external reset pin must be high level input, or the system keeps in reset status. External reset sequence is as following.

- **External reset:** System checks external reset pin status. If external reset pin is not high level, the system keeps reset status and waits external reset pin released.
- System initialization: All system registers is set as initial conditions and system is ready.
- Oscillator warm up: Oscillator operation is successfully and supply to system clock.
- **Program executing:** Power on sequence is finished and program executes from ORG 0.

3.4.1 EXTERNAL RESET CIRCUIT

The external reset circuit is a simple RC circuit as the following diagram.


Simply RC Reset Circuit

Diode Reset Circuit for Brownout Reset

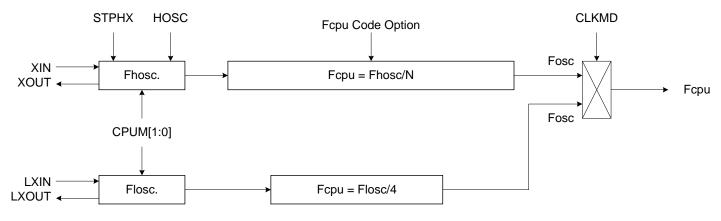
3.5 LOW VOLTAGE DETECTOR (LVD)

Low voltage detector (LVD) is built in system and the detect level is **2.2V/2.4V/3.6V**. If VDD dips below LVD detect level, system is reset. If VDD returns to above LVD detect level, system executes power on routine and program starts to work. Under high noisy situation, VDD is unstable and might dip to low voltage but not zero. This condition is called Brown Out. In brown out situation, the external reset would be error, and system can't reset by external reset and halts. System should be reset in brown out event. LVD operation provides a not zero voltage to do brown out detecting. If brown out occurs, LVD reset the system and protect system to keep in working status. LVD reset sequence is like power on reset sequence.

Brown Out Reset Diagram

4.1 OVERVIEW

The micro-controller is a dual clock system. There are high-speed clock and low-speed clock. The high-speed clock is generated from the external oscillator circuit or on-chip 16MHz high-speed RC oscillator circuit (IHRC 16MHz). The low-speed clock is generated from external low clock 32768 Hz crystal. (LXIN/LXOUT)


Both the high-speed clock and the low-speed clock can be system clock (Fosc). The system clock in slow mode is divided by 4 to be the instruction cycle (Fcpu).

In the second second

Slow Mode (Low Clock): Fcpu = Flosc/4.

SONIX provides a "**Noise Filter**" controlled by code option. In high noisy situation, the noise filter can isolate noise outside and protect system works well.

4.2 CLOCK BLOCK DIAGRAM

System Clock Diagram

- HOSC: High_Clk code option.
- Fhosc: External high-speed clock / Internal high-speed RC clock.
- Flosc: External low-speed clock (32768 Hz crystal).
- Fosc: System clock source.
- Fcpu: Instruction cycle.

4.3 OSCM REGISTER

0CAH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OSCM	-	-	-	CPUM1	CPUM0	CLKMD	STPHX	-
Read/Write	-	-	-	R/W	R/W	R/W	R/W	-
After reset	-	-	-	0	0	0	0	-

The OSCM register is an oscillator control register. It controls oscillator status, system mode.

- Bit 1 **STPHX:** External high-speed oscillator control bit.
 - 0 = External high-speed oscillator free run.
 - 1 = External high-speed oscillator free run stop. Internal low-speed RC oscillator is still running.
- Bit 2 **CLKMD:** System high/Low clock mode control bit.
 - 0 = Normal (dual) mode. System clock is high clock.
 - 1 = Slow mode. System clock is internal low clock.
- Bit[4:3] **CPUM[1:0]:** CPU operating mode control bits.
 - 00 = normal.
 - 01 = sleep (power down) mode.
 - 10 = green mode.
 - 11 = reserved.
- > Example: Stop high-speed oscillator

B0BSET FSTPHX

; To stop external high-speed oscillator only.

Example: When entering the power down mode (sleep mode), both high-speed oscillator and internal low-speed oscillator will be stopped.

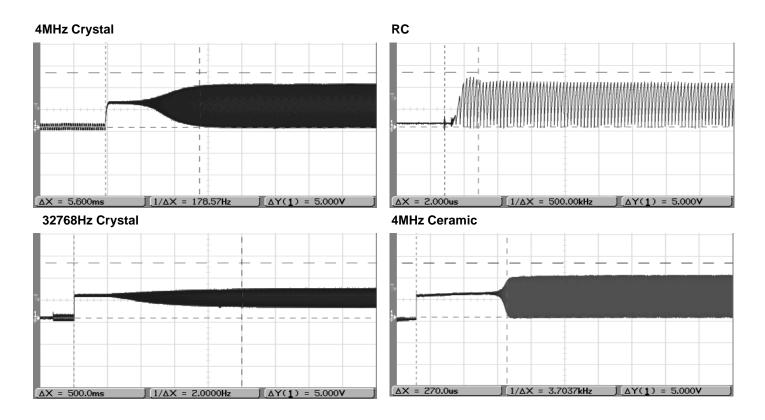
B0BSET FCPUM0 ; To stop external high-speed oscillator and internal low-speed

; oscillator called power down mode (sleep mode).

4.4 SYSTEM HIGH CLOCK

The system high clock is from internal 16MHz oscillator RC type or external oscillator. The high clock type is controlled by "High_Clk" code option.

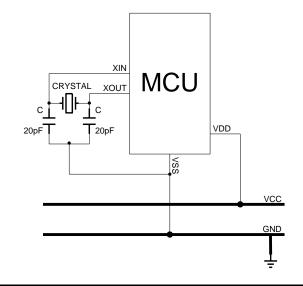
High_Clk Code Option	Description
IHRC	The high clock is internal 16MHz oscillator RC type. XIN and XOUT pins are general
ii iite	purpose I/O pins.
RC	The high clock is external RC type oscillator. XOUT pin is general purpose I/O pin.
32K	The high clock is external 32768Hz low speed oscillator.
12M	The high clock is external high speed oscillator. The typical frequency is 12MHz.
4M	The high clock is external oscillator. The typical frequency is 4MHz.


4.4.1 INTERNAL HIGH RC

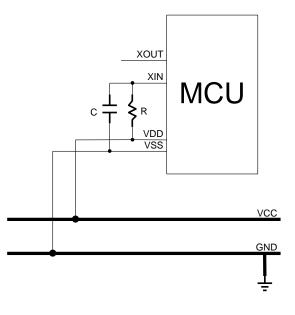
The chip is built-in RC type internal high clock (16MHz) controlled by "IHRC_16M" coed option. In "IHRC_16M" mode, the system clock is from internal 16MHz RC type oscillator and XIN / XOUT pins are general-purpose I/O pins.

• **IHRC:** High clock is internal 16MHz oscillator RC type. XIN/XOUT pins are general-purpose I/O pins.

4.4.2 EXTERNAL HIGH CLOCK


External high clock includes three modules (Crystal/Ceramic, RC and external clock signal). The high clock oscillator module is controlled by High_Clk code option. The start up time of crystal/ceramic and RC type oscillator is different. RC type oscillator's start-up time is very short, but the crystal's is longer. The oscillator start-up time decides reset time length.

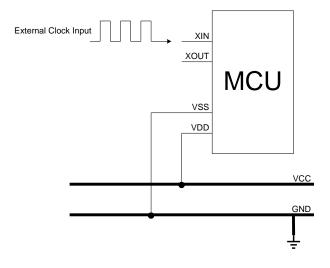
CRYSTAL/CERAMIC


Crystal/Ceramic devices are driven by XIN, XOUT pins. For high/normal/low frequency, the driving currents are different. High_Clk code option supports different frequencies. 12M option is for high speed (ex. 12MHz). 4M option is for normal speed (ex. 4MHz). 32K option is for low speed (ex. 32768Hz).

 Note: Connect the Crystal/Ceramic and C as near as possible to the XIN/XOUT/VSS pins of micro-controller.

RC

Selecting RC oscillator is by RC option of High_Clk code option. RC type oscillator's frequency is up to 10MHz. Using "R" value is to change frequency. 50P~100P is good value for "C". XOUT pin is general purpose I/O pin.



* Note: Connect the R and C as near as possible to the VDD pin of micro-controller.

EXTERNAL CLOCK SIGNAL

Selecting external clock signal input to be system clock is by RC option of High_Clk code option. The external clock signal is input from XIN pin. XOUT pin is general purpose I/O pin.

* Note: The GND of external oscillator circuit must be as near as possible to VSS pin of micro-controller.

4.5 SYSTEM LOW CLOCK

The system low clock source is the external low-speed oscillator with 32768 crystal.

- *Flosc* = ELOSC (External low crystal oscillator).
- Slow mode Fcpu = Flosc / 4

There are one conditions to stop external low clock. One is power down mode.

> Example: Stop internal low-speed oscillator by power down mode.

B0BSET	FCPUM0	; To stop external high-speed oscillator and internal low-speed
		; oscillator called power down mode (sleep mode).

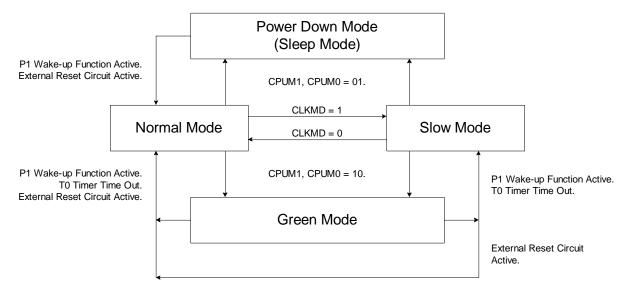
4.5.1 SYSTEM CLOCK MEASUREMENT

Under design period, the users can measure system clock speed by software instruction cycle (Fcpu). This way is useful in RC mode.

> Example: Fcpu instruction cycle of external oscillator.

	B0BSET	P1M.0	; Set P1.0 to be output mode for outputting Fcpu toggle signal.
@@:	B0BSET B0BCLR	P1.0 P1.0	; Output Fcpu toggle signal in low-speed clock mode. ; Measure the Fcpu frequency by oscilloscope.
	JMP	@B	

* Note: Do not measure the RC frequency directly from XIN; the probe impendence will affect the RC frequency.


5 SYSTEM OPERATION MODE

5.1 OVERVIEW

The chip is featured with low power consumption by switching around four different modes as following.

- High-speed mode
- Low-speed mode
- Power-down mode (Sleep mode)
- Green mode

System Mode Switching Diagram

Operating mode description

MODE	NORMAL	SLOW	GREEN	POWER DOWN (SLEEP)	REMARK
EHOSC	Running	STOP:STPHX=1 Run:STPHX=0	STOP:STPHX=1 Run:STPHX=0	Stop	
ELOSC	Running	Running	Running	Stop	
IHRC	Running	STOP:STPHX=1 Run:STPHX=0	STOP:STPHX=1 Run:STPHX=0	Stop	
ILRC	STOP:Watch Dog Disable. Run:Watch Dog Enable orAlways On.	STOP:Watch Dog Disable. Run:Watch Dog Enable or Always On.	STOP:Watch Dog Disable or Enable. Run:Watch Dog Always On.	STOP:Watch Dog Disable or Enable. Run:Watch Dog Always On.	
CPU instruction	Executing	Executing	Stop	Stop	
T0 timer	*Active	*Active	*Active	Inactive	* Active if T0ENB=1
T1 timer	*Active	*Active	Inactive	Inactive	* Active if T1ENB=1
TC0 timer	*Active	*Active	*Active	Inactive	* Active if TC0ENB=1
TC1 timer	*Active	*Active	Inactive	Inactive	* Active if TC1ENB=1
Watchdog timer	By Watch_Dog Code option	By Watch_Dog Code option	By Watch_Dog Code option	By Watch_Dog Code option	Refer to code option description
Internal interrupt	All active	All active	TO	All inactive	
Wakeup source		-	P0,P1,T0,TC0 Reset	P0,P1, Reset	

- EHOSC: External high clock
- ELOSC: External low clock (32768 Hz)
- **IHRC:** Internal high clock (16M RC oscillator)
- ILRC: Internal Low clock

5.2 SYSTEM MODE SWITCHING EXAMPLE

\triangleright	Example: Switch normal/slow mode to	power down (sleep) mode.
------------------	-------------------------------------	--------------------------

B0BSET FCPUM0 ; Set CPUM0 = 1.

Note: During the sleep, only the wakeup pin and reset can wakeup the system back to the normal mode.

> Example: Switch normal mode to slow mode.

B0BSET	FCLKMD	;To set CLKMD = 1, Change the system into slow mode
B0BSET	FSTPHX	;To stop external high-speed oscillator for power saving.

> Example: Switch slow mode to normal mode (The external high-speed oscillator is still running).

B0BCLR	FCLKMD	;To set CLKMD = 0

> Example: Switch slow mode to normal mode (The external high-speed oscillator stops).

If external high clock stop and program want to switch back normal mode. It is necessary to delay at least 10mS for external clock stable.

	B0BCLR	FSTPHX	; Turn on the external high-speed oscillator.
	MOV B0MOV	A, #27 Z, A	; If VDD = 5V, internal RC=32KHz (typical) will delay
@@:	DECMS JMP	Z @B	; 0.125ms X 81 = 10.125ms for external clock stable
	B0BCLR	FCLKMD	; ; Change the system back to the normal mode

> Example: Switch normal/slow mode to green mode.

; Set CPUM1 = 1.

Note: If T0 timer wakeup function is disabled in the green mode, only the wakeup pin and reset pin can wakeup the system backs to the previous operation mode.

> Example: Switch normal/slow mode to green mode and enable T0 wake-up function.

; Set T0 time	r wakeup function.		
	B0BCLR	FT0IEN	; To disable T0 interrupt service
	B0BCLR	FT0ENB	; To disable T0 timer
	MOV	A,#20H	;
	B0MOV	TOM,A	; To set T0 clock = Fcpu / 64
	MOV	A,#74H	•
	B0MOV	T0C,A	; To set T0C initial value = 74H (To set T0 interval = 10 ms)
	B0BCLR	FT0IEN	; To disable T0 interrupt service
	B0BCLR	FT0IRQ	; To clear T0 interrupt request
	B0BSET	FT0ENB	; To enable T0 timer
; Go into gree	en mode		
-	B0BCLR	FCPUM0	;To set CPUMx = 10
	B0BSET	FCPUM1	

* Note: During the green mode with T0 wake-up function, the wakeup pin and T0 wakeup the system back to the last mode. T0 wake-up period is controlled by program.

Example: Switch normal/slow mode to green mode and enable T0 wake-up function with RTC.

; Set T0 timer wakeup function with 0.5 sec RTC.

	B0BCLR B0BCLR	FRTC1 FRTC0	; Set RTC timer period to 0.5 sec.
	B0BSET B0BSET	FT0ENB FT0TB	; To enable T0 timer ; To enable RTC function
; Go into green	mode		
	B0BCLR B0BSET	FCPUM0 FCPUM1	;To set CPUMx = 10

5.3 WAKEUP

5.3.1 OVERVIEW

Under power down mode (sleep mode) or green mode, program doesn't execute. The wakeup trigger can wake the system up to normal mode or slow mode. The wakeup trigger sources are external trigger (P0,P1 level change) and internal trigger (T0 timer overflow).

- Power down mode is waked up to normal mode. The wakeup trigger is only external trigger (P0,P1 level change)
- Green mode is waked up to last mode (normal mode or slow mode). The wakeup triggers are external trigger (P0,P1 level change) and internal trigger (T0 timer overflow).

5.3.2 WAKEUP TIME

When the system is in power down mode (sleep mode), the high clock oscillator stops. When waked up from power down mode, MCU waits for 2048 high-speed oscillator clocks as the wakeup time to stable the oscillator circuit. After the wakeup time, the system goes into the normal mode.

* Note: Wakeup from green mode is no wakeup time because the Fcpu clock doesn't stop in green mode.

The value of the wakeup time is as the following.

The Wakeup time = 1/Fosc * 2048 (sec) + high clock start-up time

Note: The high clock start-up time is depended on the VDD and oscillator type of high clock.

Example: In power down mode (sleep mode), the system is waked up. After the wakeup time, the system goes into normal mode. The wakeup time is as the following.

The wakeup time = 1/Fosc * 2048 = 0.512 ms (Fosc = 4MHz)

The total wakeup time = 0.512 ms + oscillator start-up time

5.3.3 P1W WAKEUP CONTROL REGISTER

Under power down mode (sleep mode) and green mode, the I/O ports with wakeup function are able to wake the system up to normal mode. The Port 0 and Port 1 have wakeup function. Port 0 wakeup function always enables, but the Port 1 is controlled by the P1W register.

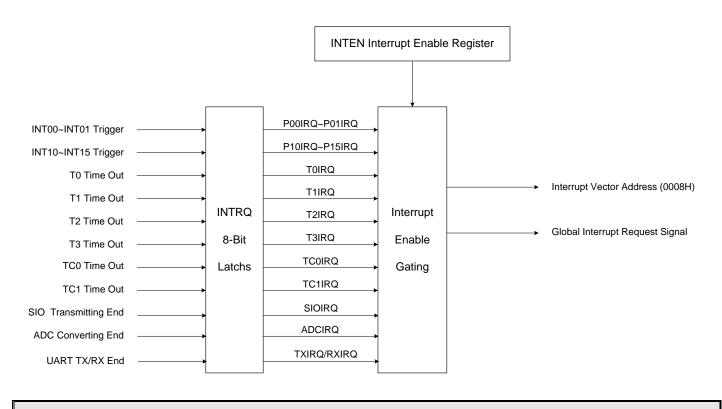
0C0H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1W	-	-	P15W	P14W	P13W	P12W	P11W	P10W
Read/Write	-	-	W	W	W	W	W	W
After reset	-	-	0	0	0	0	0	0

Bit[5:0] **P10W~P15W:** Port 1 wakeup function control bits.

0 = Disable P1n wakeup function.

1 = Enable P1n wakeup function.

Note: P0/P1 Green mode/sleep mode wakeup edge= level change.



6.1 OVERVIEW

This MCU provides 18interrupt sources, including 10 internal interrupt (T0/T1/T2/T3/TC0/TC1/ADC/SIO/URRX/URTX) and 8 external interrupt (INT00/INT01/INT10/INT11/INT12/INT13/INT14/INT15). Once interrupt service is executed, the GIE bit in STKP register will clear to "0" for stopping other interrupt request. On the contrast, when interrupt service exits, the GIE bit will set to "1" to accept the next interrupts' request. All of the interrupt request signals are stored in INTRQ register.

Note: The GIE bit must enable during all interrupt operation.

6.2 INTEN INTERRUPT ENABLE REGISTER

INTEN is the interrupt request control register including two internal interrupts, One of the register to be set "1" is to enable the interrupt request function. Once of the interrupt occur, the stack is incremented and program jump to ORG 8 to execute interrupt service routines. The program exits the interrupt service routine when the returning interrupt service routine instruction (RETI) is executed.

0C9H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTEN0	TC1IEN	TC0IEN	T1IEN	TOIEN	RXIEN	TXIEN	P01IEN	P00IEN
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0

- Bit 7 **TC1IEN:** TC1 timer interrupt control bit. 0 = Disable TC1 interrupt function.
 - 1 = Enable TC1 interrupt function.
- Bit 6 **TCOIEN:** TC0 timer interrupt control bit. 0 = Disable TC0 interrupt function. 1 = Enable TC0 interrupt function.
- Bit 5 **T1IEN:** T1 timer interrupt control bit. 0 = Disable T1 interrupt function. 1 = Enable T1 interrupt function.
- Bit 4 **TOIEN:** T0 timer interrupt control bit. 0 = Disable T0 interrupt function. 1 = Enable T0 interrupt function.
- Bit 3 **RXIEN:** UART receive interrupt control bit. 0 = Disable UART receive interrupt function. 1 = Enable UART receive interrupt function.
- Bit 2 **TXIEN:** UART transmit interrupt control bit. 0 = Disable UART transmit interrupt function. 1 = Enable UART transmit interrupt function.
- Bit 1 **P01IEN:** External P01 interrupt (INT01) control bit. 0 = Disable INT01 interrupt function. 1 = Enable INT01 interrupt function.
- Bit 0 **P00IEN:** External P00 interrupt (INT00) control bit. 0 = Disable INT00 interrupt function. 1 = Enable INT00 interrupt function.

0C7H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTEN1	SIOIEN	ADCIEN	P15IEN	P14IEN	P13IEN	P12IEN	P11IEN	P10IEN
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

Bit 7 **SIOIEN:** SIO interrupt control bit. 0 = Disable SIO interrupt function.

1 =Enable SIO interrupt function.

- Bit 6 **ADCIEN:** ADC interrupt control bit. 0 = Disable ADC interrupt function. 1 = Enable ADC interrupt function.
- Bit 5 **P15IEN:** External P15 interrupt (INT15) control bit. 0 = Disable INT15 interrupt function. 1 = Enable INT15 interrupt function.
- Bit 4 **P14IEN:** External P14 interrupt (INT14) control bit. 0 = Disable INT14 interrupt function. 1 = Enable INT14 interrupt function.
- Bit 3 **P13IEN:** External P13 interrupt (INT13) control bit. 0 = Disable INT13 interrupt function. 1 = Enable INT13 interrupt function.
- Bit 2 **P12IEN:** External P12 interrupt (INT12) control bit. 0 = Disable INT12 interrupt function. 1 = Enable INT12 interrupt function.
- Bit 1 **P11IEN:** External P11 interrupt (INT11) control bit. 0 = Disable INT11 interrupt function. 1 = Enable INT11 interrupt function.
- Bit 0 **P10IEN:** External P10 interrupt (INT10) control bit.
 - 0 = Disable INT10 interrupt function.
 - 1 = Enable INT10 interrupt function.
- Note: If P00/P01=input mode, P00IEN/P01IEN=0, then P00/P01 interrupt not active, but P00IRQ/P01IRQ still active.
- * Note: If P10/P15=input mode, P10IEN/P15IEN=0, then P10/P15 interrupt not active, but P10IRQ/P15IRQ still active.

0F6H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTEN2							T3IEN	T2IEN
Read/Write							R/W	R/W
After reset							0	0

- Bit 1 **T3IEN:** T3 timer interrupt control bit.
 - 0 = Disable T3 interrupt function.
 - 1 = Enable T3 interrupt function.
- Bit 0 **T2IEN:** T2 timer interrupt control bit.
 - 0 = Disable T2 interrupt function.
 - 1 = Enable T2 interrupt function.

6.3 INTRQ INTERRUPT REQUEST REGISTER

INTRQ is the interrupt request flag register. The register includes all interrupt request indication flags. Each one of the interrupt requests occurs, the bit of the INTRQ register would be set "1". The INTRQ value needs to be clear by programming after detecting the flag. In the interrupt vector of program, users know the any interrupt requests occurring by the register and do the routine corresponding of the interrupt request.

0C8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTRQ0	TC1IRQ	TC0IRQ	T1IRQ	T0IRQ	RXIRQ	TXIRQ	P01IRQ	P00IRQ
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0

- Bit 7 **TC1IRQ:** TC1 timer interrupt request flag.
 - 0 = None TC1 interrupt request.
 - 1 = TC1 interrupt request.
- Bit 6 **TCOIRQ:** TC0 timer interrupt request flag. 0 = None TC0 interrupt request. 1 = TC0 interrupt request.
- Bit 5 **T1IRQ:** T1 timer interrupt request flag. 0 = None T1 interrupt request. 1 = T1 interrupt request.
- Bit 4 **TOIRQ:** T0 timer interrupt request flag. 0 = None T0 interrupt request. 1 = T0 interrupt request.
- Bit 3 **RXIRQ:** UART receive interrupt request flag. 0 = None UART receive interrupt request. 1 = UART receive interrupt request.
- Bit 2 **TXIRQ:** UART transmit interrupt request flag. 0 = None UART transmit interrupt request. 1 = UART transmit interrupt request.
- Bit 1 **P01IRQ:** External P01 interrupt (INT01) request flag. 0 = None INT01 interrupt request. 1 = INT01 interrupt request.
- Bit 0 **P00IRQ:** External P00 interrupt (INT00) request flag.
 - 0 = None INT00 interrupt request.
 - 1 = INT00 interrupt request.

0C6H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTRQ1	SIOIRQ	ADCIRQ	P15IRQ	P14IRQ	P13IRQ	P12IRQ	P11IRQ	P10IRQ
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

- Bit 7 **SIOIRQ:** SIO interrupt request flag.
 - 0 = None SIO interrupt request.
 - 1 = SIO interrupt request.
- Bit 6 **ADCIRQ:** ADC interrupt request flag.
 - 0 = None ADC interrupt request.
 - 1 = ADC interrupt request.
- Bit 5 **P15IRQ:** External P15 interrupt (INT15) request flag. 0 = None INT15 interrupt request. 1 = INT15 interrupt request.

- Bit 4 **P14IRQ:** External P14 interrupt (INT14) request flag. 0 = None INT14 interrupt request. 1 = INT14 interrupt request.
- Bit 3 **P13IRQ:** External P13 interrupt (INT13) request flag. 0 = None INT13 interrupt request. 1 = INT13 interrupt request.
- Bit 2 **P12IRQ:** External P12 interrupt (INT12) request flag. 0 = None INT12 interrupt request. 1 = INT12 interrupt request.
- Bit 1 **P11IRQ:** External P11 interrupt (INT11) request flag. 0 = None INT11 interrupt request. 1 = INT11 interrupt request.
- Bit 0 **P10IRQ:** External P10 interrupt (INT10) request flag. 0 = None INT10 interrupt request. 1 = INT10 interrupt request.

0F5H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTRQ2							T3IRQ	T2IRQ
Read/Write							R/W	R/W
After reset							0	0

- Bit 1 **T3IRQ:** T3 timer interrupt request flag.
 - 0 = None T3 interrupt request.
 - 1 = T3 interrupt request.
- Bit 0 **T2IRQ:** T2 timer interrupt request flag.
 - 0 = None T2 interrupt request.
 - 1 = T2 interrupt request.

6.4 GIE GLOBAL INTERRUPT OPERATION

GIE is the global interrupt control bit. All interrupts start work after the GIE = 1 It is necessary for interrupt service request. One of the interrupt requests occurs, and the program counter (PC) points to the interrupt vector (ORG 8) and the stack add 1 level.

0DFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKP	GIE	-	-	STKPB4	STKPB3	STKPB2	STKPB1	STKPB0
Read/Write	R/W	-	-	R/W	R/W	R/W	R/W	R/W
After reset	0	-	-	1	0	1	1	1

- Bit 7 GIE: Global interrupt control bit.
 - 0 = Disable global interrupt.
 - 1 = Enable global interrupt.
- Bit[4:0] **STKPBn:** Stack pointer (n = $0 \sim 4$)
- Example: Set global interrupt control bit (GIE). B0BSET FGIE ; Enable GIE

 - Note: The GIE bit must enable during all interrupt operation.

6.5 PUSH, POP ROUTINE

When any interrupt requests occurs, the system provides to jump to interrupt vector and execute interrupt routine. The first procedure is "PUSH" operation. The end procedure after interrupt service routine execution is "POP" operation. The "PUSH" and "POP" operations aren't through instruction (PUSH, POP) and executed by hardware automatically.

- "PUSH" operation: PUSH operation saves the contents of ACC and working registers (0x80~0x87) into hardware buffers. PUSH operation executes before program counter points to interrupt vector. The RAM bank keeps the status of main routine and doesn't switch to bank 0 automatically. The RAM bank is selected by program.
- "POP" operation: POP operation reloads the contents of ACC and working registers (0x80~0x87) from hardware buffers. POP operation executes as RETI instruction executed. The RAM bank switches to last status of main routine after reloading RBANK content.
- 0x80~0x87 working registers include L, H, R, Z, Y, X, PFLAG, RBANK.
- PFLAG working register without "PUSH" and "POP" NT0, NPD, LVD36, LVD24 bits.
- > Example: interrupt service routine executed.

.DATA

.CODE	ORG JMP	0 START	
	ORG	8	(load ACC and working registers (0x80~0x87) by hardware
	JMP	INT_SERVICE	automatically)
START:	ORG	10H	
INT_SERVICE:			
	••• ···		
	RETI		; Exit interrupt service vector (load ACC and working registers (0x80~0x87) by hardware automatically)
	 ENDP		

6.6 EXTERNAL INTERRUPT OPERATION (INT00~INT01)

Sonix provides 2 sets external interrupt sources in the micro-controller.INTOnd INT1 are external interrupt trigger sources and build in edge trigger configuration function. When the external edge trigger occurs, the external interrupt request flag will be set to "1" when the external interrupt control bit enabled. If the external interrupt control bit is disabled, the external interrupt request flag won't active when external edge trigger occurrence. When external interrupt control bit is enabled and external interrupt edge trigger is occurring, the program counter will jump to the interrupt vector (ORG 8) and execute interrupt service routine.

The external interrupt builds in wake-up latch function. That means when the system is triggered wake-up from power down mode, the wake-up source is external interrupt source (P00 or P01), and the trigger edge direction matches interrupt edge configuration, the trigger edge will be latched, and the system executes interrupt service routine fist after wake-up.

0BFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PEDGE	-	-	-	-	P01G1	P01G0	P00G1	P00G0
Read/Write	-	-	-	-	R/W	R/W	R/W	R/W
After reset	-	-	-	-	1	0	1	0

Bit[3:2] **P01G[1:0]:** INT1 edge trigger select bits.

- 00 = reserved,
- 01 = rising edge,
- 10 = falling edge,
- 11 = rising/falling bi-direction.
- Bit[1:0] **P00G[1:0]:** INT0 edge trigger select bits.
 - 00 = reserved,
 - 01 = rising edge,
 - 10 = falling edge,
 - 11 = rising/falling bi-direction.

Example: Setup INT0 interrupt request and bi-direction edge trigger.

MOV B0MOV	A, #98H PEDGE, A	; Set INT0 interrupt trigger as bi-direction edge.
B0BSET	FP00IEN	; Enable INT0 interrupt service
B0BCLR	FP00IRQ	; Clear INT0 interrupt request flag
B0BSET	FGIE	; Enable GIE

Example: INT0 interrupt service routine.

INT_SERVICE:	ORG JMP	8 INT_SERVICE	; Interrupt vector
	 B0BTS1 JMP	FP00IRQ EXIT_INT	; Check P00IRQ ; P00IRQ = 0, exit interrupt vector
EXIT_INT:	B0BCLR 	FP00IRQ	; Reset P00IRQ ; INT0 interrupt service routine
	 RETI		; Exit interrupt vector

6.7 INT10~INT15 (P10~P15) INTERRUPT OPERATION

When the INT10~INT15 trigger occurs, the P10IRQ~P15IRQ will be set to "1" no matter the P10IEN~P15IEN is enable or disable. If the P10IEN~P15IEN = 1 and the trigger event P10IRQ~P15IRQ is also set to be "1". As the result, the system will execute the interrupt vector (ORG 8). If the P10IEN~P15IEN = 0 and the trigger event P10IRQ~P15IRQ is still set to be "1". Moreover, the system won't execute interrupt vector even when the P10IRQ~P15IRQ is set to be "1". Users need to be cautious with the operation under multi-interrupt situation.

- * Note: The interrupt trigger direction of P10~P15 is falling edge.
- \triangleright Example: INT10 interrupt request setup. **B0BSET** FP10IEN ; Enable INT10 interrupt service FP10IRQ **B0BCLR** ; Clear INT10 interrupt request flag **B0BSET** FGIE ; Enable GIE ≻ Example: INT10 interrupt service routine. ORG 8 ; Interrupt vector INT_SERVICE JMP INT_SERVICE: ... B0BTS1 FP10IRQ : Check P10IRQ EXIT INT ; P10IRQ = 0, exit interrupt vector JMP **B0BCLR** FP10IRQ : Reset P10IRQ ; INT10 interrupt service routine EXIT_INT: RETI ; Exit interrupt vector

6.8 T0 INTERRUPT OPERATION

When the TOC counter occurs overflow, the TOIRQ will be set to "1" however the TOIEN is enable or disable. If the TOIEN = 1, the trigger event will make the TOIRQ to be "1" and the system enter interrupt vector. If the TOIEN = 0, the trigger event will make the TOIRQ to be "1" but the system will not enter interrupt vector. Users need to care for the operation under multi-interrupt situation.

> Example: T0 interrupt request setup.

BOBCLR BOBCLR MOV BOMOV MOV BOMOV	FT0IEN FT0ENB A, #20H T0M, A A, #74H T0C, A	; Disable T0 interrupt service ; Disable T0 timer ; Set T0 clock = Fcpu / 64 ; Set T0C initial value = 74H ; Set T0 interval = 10 ms
B0BSET B0BCLR B0BSET	FT0IEN FT0IRQ FT0ENB	; Enable T0 interrupt service ; Clear T0 interrupt request flag ; Enable T0 timer
B0BSET	FGIE	; Enable GIE

> Example: T0 interrupt service routine.

INT_SERVICE:	ORG JMP	8 INT_SERVICE	; Interrupt vector
	B0BTS1 JMP	FT0IRQ EXIT_INT	; Check T0IRQ ; T0IRQ = 0, exit interrupt vector
	B0BCLR MOV	FT0IRQ A, #74H	; Reset T0IRQ
	B0MOV	TOC, A	; Reset T0C. ; T0 interrupt service routine
EXIT_INT:			; Pop routine to load ACC and PFLAG from buffers.
	RETI		; Exit interrupt vector

6.9 T1 INTERRUPT OPERATION

When the T1C (T1CH, T1CL) counter occurs overflow, the T1IRQ will be set to "1" however the T1IEN is enable or disable. If the T1IEN = 1, the trigger event will make the T1IRQ to be "1" and the system enter interrupt vector. If the T1IEN = 0, the trigger event will make the T1IRQ to be "1" but the system will not enter interrupt vector. Users need to care for the operation under multi-interrupt situation.

> Example: T1 interrupt request setup.

B0BCLR B0BCLR MOV B0MOV CLR	FT1IEN FT1ENB A, #20H T1M, A T1C	; Disable T1 interrupt service ; Disable T1 timer ; ; Set T1 clock = Fcpu / 64 and falling edge trigger.
B0BSET B0BCLR B0BSET	FT1IEN FT1IRQ FT1ENB	; Enable T1 interrupt service ; Clear T1 interrupt request flag ; Enable T1 timer
BOBSET	FGIE	; Enable GIE

> Example: T1 interrupt service routine.

INT_SERVICE:	ORG JMP 	8 INT_SERVICE	; Interrupt vector
	B0BTS1 JMP	FT1IRQ EXIT_INT	; Check T1IRQ ; T1IRQ = 0, exit interrupt vector
	B0BCLR B0MOV	FT1IRQ A, T1C	; Reset T1IRQ
	B0MOV B0MOV CLR	T1CBUF, A	; Save pulse width.
			; T1 interrupt service routine
EXIT_INT:			
	 RETI		; Exit interrupt vector

6.10 TC0 INTERRUPT OPERATION

When the TCOC counter overflows, the TCOIRQ will be set to "1" no matter the TCOIEN is enable or disable. If the TCOIEN and the trigger event TCOIRQ is set to be "1". As the result, the system will execute the interrupt vector. If the TCOIEN = 0, the trigger event TCOIRQ is still set to be "1". Moreover, the system won't execute interrupt vector even when the TCOIEN is set to be "1". Users need to be cautious with the operation under multi-interrupt situation.

> Example: TC0 interrupt request setup.

B0BCLR	FTC0IEN	; Disable TC0 interrupt service
B0BCLR	FTC0ENB	; Disable TC0 timer
MOV	A, #20H	;
B0MOV	TC0M, A	; Set TC0 clock = Fcpu / 64
MOV	A, #74H	; Set TC0C initial value = 74H
B0MOV	TC0C, A	; Set TC0 interval = 10 ms
B0BSET	FTC0IEN	; Enable TC0 interrupt service
B0BCLR	FTC0IRQ	; Clear TC0 interrupt request flag
B0BSET	FTC0ENB	; Enable TC0 timer
BOBSET	FGIE	; Enable GIE

> Example: TC0 interrupt service routine.

INT_SERVICE:	ORG JMP	8 INT_SERVICE	; Interrupt vector
	B0BTS1 JMP	FTC0IRQ EXIT_INT	; Check TC0IRQ ; TC0IRQ = 0, exit interrupt vector
	B0BCLR MOV	FTC0IRQ A, #74H	; Reset TC0IRQ
	BOMOV	TCOC, A	; Reset TC0C.
			; TC0 interrupt service routine
EXIT_INT:			
	 RETI		; Exit interrupt vector

6.11 TC1 INTERRUPT OPERATION

When the TC1C counter overflows, the TC1IRQ will be set to "1" no matter the TC1IEN is enable or disable. If the TC1IEN and the trigger event TC1IRQ is set to be "1". As the result, the system will execute the interrupt vector. If the TC1IEN = 0, the trigger event TC1IRQ is still set to be "1". Moreover, the system won't execute interrupt vector even when the TC1IEN is set to be "1". Users need to be cautious with the operation under multi-interrupt situation.

> Example: TC0 interrupt request setup.

B0BCLR B0BCLR MOV B0MOV MOV B0MOV	FTC1IEN FTC1ENB A, #20H TC1M, A A, #74H TC1C, A	; Disable TC1 interrupt service ; Disable TC1 timer ; ; Set TC1C initial value = 74H ; Set TC1 interval = 10 ms
B0BSET B0BCLR B0BSET	FTC1IEN FTC1IRQ FTC1ENB	; Enable TC1 interrupt service ; Clear TC1 interrupt request flag ; Enable TC1 timer
B0BSET	FGIE	; Enable GIE

> Example: TC1 interrupt service routine.

INT SERVICE:	ORG JMP	8 INT_SERVICE	; Interrupt vector
INT_OENVICE.			
	B0BTS1 JMP	FTC1IRQ EXIT_INT	; Check TC1IRQ ; TC1IRQ = 0, exit interrupt vector
	B0BCLR MOV	FTC1IRQ A, #74H	; Reset TC1IRQ
	B0MOV	TC1C, A	; Reset TC1C. ; TC1 interrupt service routine
EXIT_INT:			
	 RETI		; Exit interrupt vector

6.12 MULTI-INTERRUPT OPERATION

Under certain condition, the software designer uses more than one interrupt requests. Processing multi-interrupt request requires setting the priority of the interrupt requests. The IRQ flags of interrupts are controlled by the interrupt event. Nevertheless, the IRQ flag "1" doesn't mean the system will execute the interrupt vector. In addition, which means the IRQ flags can be set "1" by the events without enable the interrupt. Once the event occurs, the IRQ will be logic "1". The IRQ and its trigger event relationship is as the below table.

Interrupt Name	Trigger Event Description
T0IRQ	T0C overflow.
T1IRQ	T1C overflow.
TC0IRQ	TC0C overflow.
TC1IRQ	TC1C overflow.
RXIRQ/TXIRQ	UART transmitter successfully.
ADCIRQ	ADC transmitter successfully.
SIOIRQ	SIO transmitter successfully.
P00IRQ~P01IRQ	P00~P01 trigger controlled by PEDGE
P10IRQ~P15IRQ	P10~P15 rising/falling bi-direction trigger.

For multi-interrupt conditions, two things need to be taking care of. One is to set the priority for these interrupt requests. Two is using IEN and IRQ flags to decide which interrupt to be executed. Users have to check interrupt control bit and interrupt request flag in interrupt routine.

> Example: Check the interrupt request under multi-interrupt operation

INT_SERVICE:	ORG JMP 	8 INT_SERVICE	; Interrupt vector
INTTOCHK: INTTCOCHK:	BOBTS1 JMP BOBTS0 JMP BOBTS1 JMP BOBTS0 JMP	FTOIEN INTTCOCHK FTOIRQ INTTO FTCOIEN INT_EXIT FTCOIRQ INTTCO	; Check T0 interrupt request ; Check T0IEN ; Jump check to next interrupt ; Check T0IRQ ; Jump to T0 interrupt service routine ; Check TC0 interrupt request ; Check TC0IEN ; Jump to exit of IRQ ; Check TC0IRQ ; Jump to TC0 interrupt service routine
	RETI		; Exit interrupt vector

7 I/O PORT

7.1 I/O PORT MODE

The port direction is programmed by PnM register. All I/O ports can select input or output direction.

0B8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0M	-	-	-	-	-	-	P01M	P00M
Read/Write	-	-	-	-	-	-	R/W	R/W
After reset	-	-	-	-	-	-	0	0
0C1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

0C1H	Bit /	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1M	-	-	P15M	P14M	P13M	P12M	P11M	P10M
Read/Write	-	-	R/W	R/W	R/W	R/W	R/W	R/W
After reset	-	-	0	0	0	0	0	0

0C2H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2M	-	-	-	-	P23M	P22M	P21M	P20M
Read/Write	-	-	-	-	R/W	R/W	R/W	R/W
After reset	-	-	-	-	0	0	0	0

0C4H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P4M	-	P46M	P45M	P44M	P43M	P42M	P41M	P40M
Read/Write	-	R/W						
After reset	-	0	0	0	0	0	0	0

0C5H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P5M	-	P56M	P55M	P54M	P53M	P52M	P51M	P50M
Read/Write	-	R/W						
After reset	-	0	0	0	0	0	0	0

Bit[7:0] **PnM[7:0]:** Pn mode control bits. $(n = 0 \sim 5)$.

0 = Pn is input mode.

1 = Pn is output mode.

> Example: I/O mode selecting

CLR CLR CLR	P1M P4M P5M	; Set all ports to be input mode.
MOV B0MOV B0MOV B0MOV	A, #0FFH P1M, A P4M,A P5M, A	; Set all ports to be output mode.
B0BCLR	P4M.0	; Set P4.0 to be input mode.
B0BSET	P4M.0	; Set P4.0 to be output mode.

7.2 I/O PULL UP REGISTER

0E0H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0UR							P01R	P00R
Read/Write							W	W
After reset							0	0
0E1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1UR			P15R	P14R	P13R	P12R	P11R	P10R
Read/Write			W	W	W	W	W	W
After reset			0	0	0	0	0	0
0E2H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2UR					P23R	P22R	P21R	P20R
Read/Write					W	W	W	W
After reset					0	0	0	0
0E4H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P4UR		P46R	P45R	P44R	P43R	P42R	P41R	P40R
Read/Write		W	W	W	W	W	W	W
After reset		0	0	0	0	0	0	0
0E5H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P5UR		P56R	P55R	P54R	P53R	P52R	P51R	P50R
Read/Write		W	W	W	W	W	W	W
After reset		0	0	0	0	0	0	0

;

> Example: I/O Pull up Register

MOV	A, #0FFH
B0MOV	P1UR, A
B0MOV	P4UR,A
B0MOV	P5UR, A

; Enable Port1, 4, 5 Pull-up register,

7.3 I/O PORT DATA REGISTER

0D0H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0							P01	P00
Read/Write							R/W	R/W
After reset							0	0
0D1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1			P15	P14	P13	P12	P11	P10
Read/Write			R/W	R/W	R/W	R/W	R/W	R/W
After reset			0	0	0	0	0	0
		•						
0D2H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2					P23	P22	P21	P20
Read/Write					R/W	R/W	R/W	R/W
After reset					0	0	0	0
		•						
0D4H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P4		P46	P45	P44	P43	P42	P41	P40
Read/Write		R/W						
After reset		0	0	0	0	0	0	0

0D5H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P5		P56	P55	P54	P53	P52	P51	P50
Read/Write		R/W						
After reset		0	0	0	0	0	0	0

> Example: Read data from input port.

BOMOV	A, P1
B0MOV	A, P4
B0MOV	A, P5

; Read data from Port 1

; Read data from Port 4

; Read data from Port 5

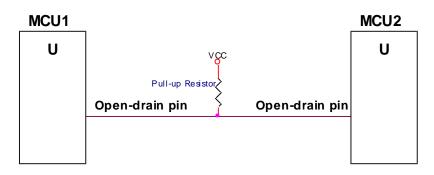
- > Example: Write data to output port.
 - MOV
 A, #0FFH

 B0MOV
 P1, A

 B0MOV
 P4, A

 B0MOV
 P5, A

; Write data FFH to all Port.


> Example: Write one bit data to output port.

B0BSET B0BSET	P4.0 P5.3	; Set P4.0 and P5.3 to be "1".
B0BCLR B0BCLR	P4.0 P5.3	; Set P4.0 and P5.3 to be "0".

7.4 I/O OPEN-DRAIN REGISTER

P10~P13/P50~P52 is built-in open-drain function. The I/O must be set as output mode when enable open-drain function. Open-drain external circuit is as following.

The pull-up resistor is necessary. Open-drain output high is driven by pull-up resistor. Output low is sunken by MCU's pin.

0E9H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P10C		P52OC	P510C	P50OC	P130C	P120C	P110C	P10OC
Read/Write		W	W	W	W	W	W	W
After reset		0	0	0	0	0	0	0

- Bit 6 **P52OC:** P5.2 open-drain control bit
 - 0 = Disable open-drain mode
 - 1 = Enable open-drain mode
- Bit 5 **P51OC:** P5.1 open-drain control bit 0 = Disable open-drain mode 1 = Enable open-drain mode
- Bit 4 **P500C:** P5.0 open-drain control bit 0 = Disable open-drain mode 1 = Enable open-drain mode
- Bit 3 **P13OC:** P1.3 open-drain control bit 0 = Disable open-drain mode 1 = Enable open-drain mode
- Bit 2 **P12OC:** P1.2 open-drain control bit 0 = Disable open-drain mode 1 = Enable open-drain mode
- Bit 1 **P110C:** P1.1 open-drain control bit 0 = Disable open-drain mode 1 = Enable open-drain mode
- Bit 0 **P100C:** P1.0 open-drain control bit 0 = Disable open-drain mode
 - 1 = Enable open-drain mode
 - * Note: P12,P13 no support Open Drain function in ICE emulate.

> Example: Enable P1.0 to open-drain mode and output high.

B0BSET	P1.0	; Set P1.0 buffer high.
MOV B0MOV	A, #01H P1OC, A	; Enable P1.0 open-drain function.
BOBSET	P10M	; Enable P1.0 output mode.

* Note: P1OC is write only register. Setting P10OC must be used "MOV" instructions.

> Example: Disable P1.0 to open-drain mode and output low.

MOV B0MOV A, #0 P1OC, A

; Disable P1.0 open-drain function.

* Note: After disable open-drain function, I/O mode returns to last I/O mode.

7.5 PORT 4 ADC SHARE PIN

The Port 4 is shared with ADC input function and no Schmitt trigger structure. Only one pin of port 4 can be configured as ADC input in the same time by ADM register. The other pins of port 4 are digital I/O pins. Connect an analog signal to COMS digital input pin, especially the analog signal level is about 1/2 VDD will cause extra current leakage. In the power down mode, the above leakage current will be a big problem. Unfortunately, if users connect more than one analog input signal to port 4 will encounter above current leakage situation. P4CON is Port4 Configuration register. Write "1" into P4CON.n will configure related port 4 pin as pure analog input pin to avoid current leakage.

0BEH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P4CON		P4CON6	P4CON5	P4CON4	P4CON3	P4CON2	P4CON1	P4CON0
Read/Write		W	W	W	W	W	W	W
After reset		0	0	0	0	0	0	0

Bit[3:0] **P4CON[6:0]:** P4.n configuration control bits.

0 = P4.n can be an analog input (ADC input) or digital I/O pins.

1 = P4.n is pure analog input, can't be a digital I/O pin.

Note: When Port 4.n is general I/O port not ADC channel, P4CON.n must set to "0" or the Port 4.n digital I/O signal would be isolated.

Port 4 ADC analog input is controlled by GCHS and CHSn bits of ADM register. If GCHS = 0, P4.n is general purpose bi-direction I/O port. If GCHS = 1, P4.n pointed by CHSn is ADC analog signal input pin. Users should set P4 ADC input pin as input mode without pull-up.

0B1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADM	ADENB	ADS	EOC	GCHS	-	CHS2	CHS1	CHS0
Read/Write	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W
After reset	0	0	0	0	-	0	0	0

Bit 4 **GCHS:** Global channel select bit.

0 = Disable AIN channel.

1 = Enable AIN channel.

Bit[2:0] **CHS[2:0]:** ADC input channels select bit. 000 = AIN0, 001 = AIN1, ... 110 = AIN6, 111 = AIN7.

* Note: For P4.n general purpose I/O function, users should make sure of P4.n's ADC channel is disabled.

> Example: Set P4.1 to be general purpose input mode. P4CON.1 must be set as "0".

; Check GCHS	and CHS[2:0] sta	atus.				
	B0BCLR	FGCHS	;If CHS[2:0] point to P4.1 (CHS[2:0] = 001B), set GCHS=0 ;If CHS[2:0] don't point to P4.1 (CHS[2:0] ≠ 001B), don't care GCHS status.			
; Clear P4CON	I .1					
	B0BCLR	P4CON.1	; Enable P4.1 digital function.			
; Enable P4.1	innut mode					
, Enable 1 4.1	B0BCLR	P4M.1	; Set P4.1 as input mode.			
	Example: Set P4.1 to be general purpose output. P4CON.1 must be set as "0". ; Check GCHS and CHS[2:0] status.					
,	BOBCLR	FGCHS	;If CHS[2:0] point to P4.1 (CHS[2:0] = 001B), set GCHS=0. ;If CHS[2:0] don't point to P4.1 (CHS[2:0] ≠ 001B), don't care GCHS status.			
; Clear P4CON	B0BCLR		;If CHS[2:0] don't point to P4.1 (CHS[2:0] ≠ 001B), don't			
	B0BCLR		;If CHS[2:0] don't point to P4.1 (CHS[2:0] ≠ 001B), don't			
; Clear P4CON	BOBCLR I. BOBCLR	FGCHS P4CON.1	;If CHS[2:0] don't point to P4.1 (CHS[2:0] ≠ 001B), don't care GCHS status.			
; Clear P4CON	BOBCLR	FGCHS P4CON.1	;If CHS[2:0] don't point to P4.1 (CHS[2:0] ≠ 001B), don't care GCHS status.			
; Clear P4CON	BOBCLR I. BOBCLR Dut buffer to avoid	FGCHS P4CON.1 d glitch.	<pre>;If CHS[2:0] don't point to P4.1 (CHS[2:0] ≠ 001B), don't care GCHS status.</pre> ; Enable P4.1 digital function.			
; Clear P4CON ; Set P4.1 outj	BOBCLR BOBCLR Dut buffer to avoid BOBSET BOBCLR	FGCHS P4CON.1 d glitch. P4.1	 ;If CHS[2:0] don't point to P4.1 (CHS[2:0] ≠ 001B), don't care GCHS status. ; Enable P4.1 digital function. ; Set P4.1 buffer as "1". 			

8.1 WATCHDOG TIMER (WDT)

The watchdog timer (WDT) is a binary up counter designed for monitoring program execution. If the program goes into the unknown status by noise interference, WDT overflow signal raises and resets MCU. Watchdog clock controlled by code option and the clock source is internal low-speed oscillator (10KHz @3V).

Watchdog overflow time = 8192 / Internal Low-Speed oscillator (sec).

VDD	Internal Low RC Freq.	Watchdog Overflow Time
3V	10KHz	819.2ms

The watchdog timer has three operating options controlled "WatchDog" code option.

- **Disable:** Disable watchdog timer function.
- **Enable:** Enable watchdog timer function. Watchdog timer actives in normal mode and slow mode. In power down mode and green mode, the watchdog timer stops.
- Always_On: Enable watchdog timer function. The watchdog timer actives and not stop in power down mode and green mode.

In high noisy environment, the "Always_On" option of watchdog operations is the strongly recommendation to make the system reset under error situations and re-start again.

Watchdog clear is controlled by WDTR register. Moving **0x5A** data into WDTR is to reset watchdog timer.

0CCH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTR	WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	WDTR0
Read/Write	W	W	W	W	W	W	W	W
After reset	0	0	0	0	0	0	0	0

> Example: An operation of watchdog timer is as following. To clear the watchdog timer counter in the top of the main routine of the program.

; Clear the watchdog timer.

Main:

MOV B0MOV	A, #5AH WDTR, A				
CALL CALL	SUB1 SUB2				
 JMP	MAIN				

Watchdog timer application note is as following.

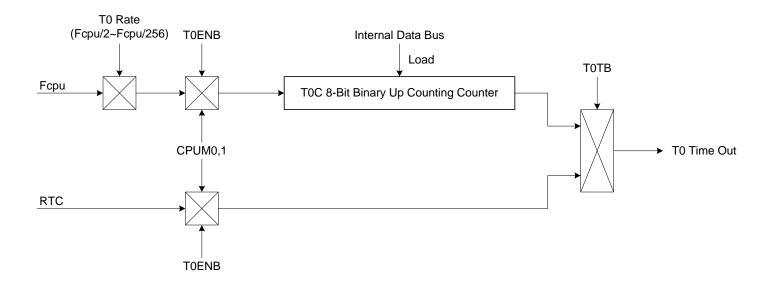
- Before clearing watchdog timer, check I/O status and check RAM contents can improve system error.
- Don't clear watchdog timer in interrupt vector and interrupt service routine. That can improve main routine fail.
- Clearing watchdog timer program is only at one part of the program. This way is the best structure to enhance the watchdog timer function.

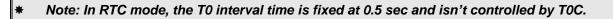
8-Bit MCU build-in 12-bit ADC + PGIA + Charge-pump Regulator + 144 dots LCD driver

Example: An operation of watchdog timer is as following. To clear the watchdog timer counter in the top of the main routine of the program.

Main: Err:	 JMP \$; Check I/O. ; Check RAM ; I/O or RAM error. Program jump here and don't ; clear watchdog. Wait watchdog timer overflow to reset IC.
Correct:	MOV B0MOV	A, #5AH WDTR, A	; I/O and RAM are correct. Clear watchdog timer and ; execute program. ; Clear the watchdog timer.
	CALL CALL CALL 	SUB1 SUB2	

JMP MAIN


8.2 TIMER 0 (T0)


8.2.1 OVERVIEW

The T0 is an 8-bit binary up timer and event counter. If T0 timer occurs an overflow (from FFH to 00H), it will continue counting and issue a time-out signal to trigger T0 interrupt to request interrupt service.

The main purposes of the T0 timer is as following.

- 8-bit programmable up counting timer: Generates interrupts at specific time intervals based on the selected clock frequency.
- RTC timer: Generates interrupts at real time intervals based on the selected clock source. RTC function is only available in T0TB=1.
- Green mode wakeup function: T0 can be green mode wake-up time as T0ENB = 1. System will be wake-up by T0 time out.

8.2.2 TOM MODE REGISTER

0D8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ТОМ	T0ENB	T0rate2	T0rate1	T0rate0	TC1X8	TC0X8	TC0GN	TOTB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0

Bit7 **TOENB:** T0 timer control bit. 0 = disable, 1 = enable.

Bit[6:4] **TORATE2~TORATE0:** The <u>TO timer's clock source selects bits</u>.

T0RATE [2:0]	T0 Clock Source
000	F _{сри} /256
001	F _{сри} /128
110	F _{сеџ} /4
111	F _{сри} /2

- Bit3 **TC1X8:** Multiple TC1 timer speed eight times. Refer TC1M register for detailed information. 0 = Disable
 - 1 = Enable
- Bit2 **TC0X8:** Multiple TC0 timer speed eight times. Refer TC0M register for detailed information. 0 = Disable
 - 1 = Enable
- Bit1 **TC0GN:** Enable TC0 green mode wakeup function 0 = Disable 1 = Enable
- Bit0 **T0TB:** Timer 0 as the Real-Time clock time base.
 - 0 = Timer 0 function as a normal timer system.

1 = Timer 0 function as a Real-Time Clock. The clock source of timer 0 will be switched to external low clock (32.768K crystal oscillator).

Note: T0RATE is not available in RTC mode. The T0 interval time is fixed at 0.5 sec.

8.2.3 TOC COUNTING REGISTER

T0C is an 8-bit counter register for T0 interval time control.

0D9H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T0C	T0C7	T0C6	T0C5	T0C4	T0C3	T0C2	T0C1	T0C0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

The equation of TOC initial value is as following.

T0C initial value = 256 - (T0 interrupt interval time * input clock)

Example: To set 10ms interval time for T0 interrupt. High clock is external 4MHz. Fcpu=Fosc/4. Select T0RATE=010 (Fcpu/64).

lock)
-

The basic timer table interval time of T0.

TORATE TOCLOCK		High speed mode	(Fcpu = 4MHz / 4)	Low speed mode (Fcpu = 32768Hz / 4)		
TURATE	TUCLUCK	Max overflow interval	One step = max/256	Max overflow interval	One step = max/256	
000	Fcpu/256	65.536 ms	256 us	8000 ms	31250 us	
001	Fcpu/128	32.768 ms	128 us	4000 ms	15625 us	
010	Fcpu/64	16.384 ms	64 us	2000 ms	7812.5 us	
011	Fcpu/32	8.192 ms	32 us	1000 ms	3906.25 us	
100	Fcpu/16	4.096 ms	16 us	500 ms	1953.125 us	
101	Fcpu/8	2.048 ms	8 us	250 ms	976.563 us	
110	Fcpu/4	1.024 ms	4 us	125 ms	488.281 us	
111	Fcpu/2	0.512 ms	2 us	62.5 ms	244.141 us	

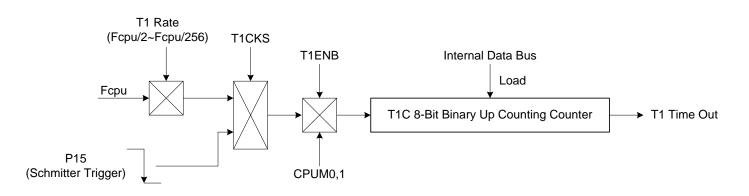
Note: T0C is not available in RTC mode. The T0 interval time is fixed at 0.5 sec.

8.2.4 T0 TIMER OPERATION SEQUENCE

T0 timer operation sequence of setup T0 timer is as following.

Ŧ Stop T0 timer counting, disable T0 interrupt function and clear T0 interrupt request flag.

	B0BCLR B0BCLR B0BCLR	FT0ENB FT0IEN FT0IRQ	; T0 timer. ; T0 interrupt function is disabled. ; T0 interrupt request flag is cleared.
Ē	Set T0 timer rate.		
	MOV	A, #0xxx0000b	;The T0 rate control bits exist in bit4~bit6 of T0M. The
	B0MOV	T0M,A	; value is from x000xxxxb~x111xxxxb. ; T0 timer is disabled.
œ۳	Set T0 clock source from	Fcpu or RTC.	
~ "	B0BCLR	FT0TB	; Select T0 Fcpu clock source.
or	BOBSET	FT0TB	; Select T0 RTC clock source.
Ŧ	Set T0 interrupt interval ti	me.	
	MOV B0MOV	A,#7FH T0C,A	; Set T0C value.
Ē	Set T0 timer function mod	le.	
	BOBSET	FTOIEN	; Enable T0 interrupt function.
Ŧ	Enable T0 timer.		
	BOBSET	FT0ENB	; Enable T0 timer.



8.3 TIMER 1 (T1) 8.3.1 OVERVIEW

The T1 is an 8-bit binary up timer and event counter. If T1 timer occurs an overflow (from FFH to 00H), it will continue counting and issue a time-out signal to trigger T1 interrupt to request interrupt service.

The main purposes of the T1 timer is as following.

- 8-bit programmable up counting timer: Generates interrupts at specific time intervals based on the selected clock frequency.
- External event counter: Counts system "events" based on falling edge detection of external clock signals at the P15 input pin.

8.3.2 T1M MODE REGISTER

0D6H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1M	T1ENB	T1rate2	T1rate1	T1rate0	T1CKS			
Read/Write	R/W	R/W	R/W	R/W	R/W			
After reset	0	0	0	0	0			

Bit7 **T1ENB:** T1 timer control bit.

0 = disable

1 = enable.

Bit[6:4] **T1RATE2~T1RATE0:** The <u>T1 timer's clock source selects bits</u>.

T1RATE [2:0]	T1 Clock Source
000	F _{сри} /256
001	F _{сри} /128
110	F _{сри} /4
111	F _{сри} /2

Bit 3 **T1CKS:** T1 clock source select bit.

0 = Internal clock.

1 = External clock from P15 pin.

8.3.3 T1C COUNTING REGISTER

T1C is an 8-bit counter register for T1 interval time control.

0D7H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1C	T1C7	T1C6	T1C5	T1C4	T1C3	T1C2	T1C1	T1C0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

The equation of T1C initial value is as following.

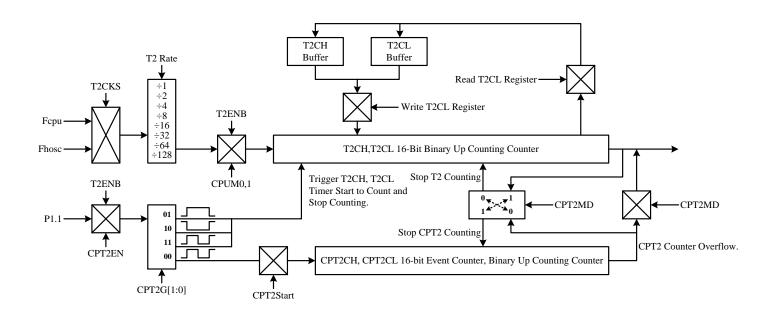
T1C initial value = 256 - (T1 interrupt interval time * input clock)

Example: To set 10ms interval time for T1 interrupt. High clock is external 4MHz. Fcpu=Fosc/4. Select T1RATE=010 (Fcpu/64).

T1C initial value = 256 - (T1 interrupt interval time * input clock)= 256 - (10 ms * 4MHz / 4 / 64)= 256 - (10 - 2 * 4 * 106 / 4 / 64)= 100= 64H

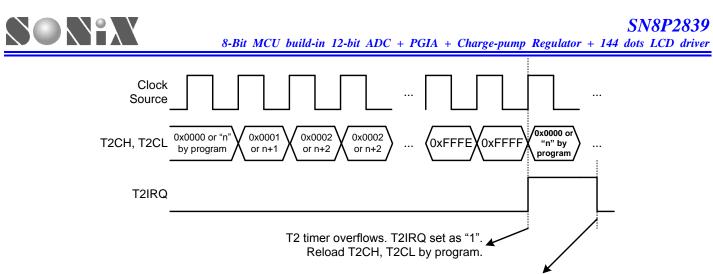
The basic timer table interval time of T1.

T1RATE	T1CLOCK	High speed mode	(Fcpu = 4MHz / 4)	Low speed mode (Fcpu = 32768Hz / 4)		
TIRATE	TICLOCK	Max overflow interval	One step = max/256	Max overflow interval	One step = max/256	
000	Fcpu/256	65.536 ms	256 us	8000 ms	31250 us	
001	Fcpu/128	32.768 ms	128 us	4000 ms	15625 us	
010	Fcpu/64	16.384 ms	64 us	2000 ms	7812.5 us	
011	Fcpu/32	8.192 ms	32 us	1000 ms	3906.25 us	
100	Fcpu/16	4.096 ms	16 us	500 ms	1953.125 us	
101	Fcpu/8	2.048 ms	8 us	250 ms	976.563 us	
110	Fcpu/4	1.024 ms	4 us	125 ms	488.281 us	
111	Fcpu/2	0.512 ms	2 us	62.5 ms	244.141 us	



8.4 T2 16-bit Timer with Capture Timer Function

8.4.1 OVERVIEW


The T2 timer is a 16-bit binary up timer with basic timer and capture timer functions. The basic timer function supports flag indicator (T2IRQ bit) and interrupt operation (interrupt vector). The interval time is programmable through T2M, T2CH/T2CL 16-bit counter registers. The capture timer supports high pulse width measurement, low pulse width measurement, cycle measurement and continuous duration from P1.1. T2 becomes a timer meter to count external signal time parameters to implement measure application. The main purposes of the T2 timer are as following.

- I6-bit programmable up counting timer: Generate time-out at specific time intervals based on the selected clock frequency.
- **16-bit measurement:** Measure the input signal pulse width and cycle depend on the T2 clock time base to decide the capture timer's resolution. The capture timer builds in programmable trigger edge selection to decide the start-stop trigger event.
- I6-bit capture timer: The 16-bit event counter to detect event source for accumulative capture timer function. The event counter is up counting design.
- Interrupt function: T2 timer function and capture timer function support interrupt function. When T2 timer occurs overflow or capture timer stops counting, the T2IRQ actives and the system points program counter to interrupt vector to do interrupt sequence.
- Green mode function: All T2 functions (timer, capture timer...) keeps running in green mode, but no wake-up function. Timer IRQ actives as any IRQ trigger occurrence, e.g. timer overflow...

8.4.2 T2 TIMER OPERATION

T2 timer is controlled by T2ENB bit. When T2ENB=0, T2 timer stops. When T2ENB=1, T2 timer starts to count. Before enabling T2 timer, setup T2 timer's configurations to select timer function modes, e.g. basic timer, interrupt function...T2 16-bit counter (T2CH, T2CL) increases "1" by timer clock source. When T2 overflow event occurs, T2IRQ flag is set as "1" to indicate overflow and cleared by program. The overflow condition is T2CH, T2CL count from full scale (0xFFFF) to zero scale (0x0000). T2 doesn't build in double buffer, so load T2CH, T2CL by program when T2 timer overflows to fix the correct interval time. If T2 timer interrupt function is enabled (T2IEN=1), the system will execute interrupt procedure. The interrupt procedure is system program counter points to interrupt vector (ORG 0008H) and executes interrupt service routine after T2 overflow occurrence. Clear T2IRQ by program is necessary in interrupt procedure. T2 timer can works in normal mode, slow mode and green mode.

T2IRQ is cleared by program.

T2 provides different clock sources to implement different applications and configurations. T2 clock source includes Fcpu (instruction cycle) and Fhosc (high speed oscillator) controlled by T2CKS bit. T2CKS bit selects the clock source is from Fcpu or Fhosc. If T2CKS=0, T2 clock source is Fcpu through T2rate[2:0] pre-scalar to decide Fcpu/1~Fcpu/128. If T2CKS=1, T2 clock source is Fhosc through T2 rate[2:0] pre-scalar to decide Fhosc/128. T2 length is 16-bit (65536 steps), and the one count period is each cycle of input clock.

				T2 Interv	val Time		
T2CKS	T2rate[2:0]	T2 Clock	Fhosc=1 Fcpu=F	•	Fhosc=4MHz, Fcpu=Fhosc/4		
			max. (ms)	Unit (us)	max. (ms)	Unit (us)	
0	000b	Fcpu/128	2097.152	32	8388.608	128	
0	001b	Fcpu/64	1048.576	16	4194.304	64	
0	010b	Fcpu/32	524.288	8	2097.152	32	
0	011b	Fcpu/16	262.144	4	1048.576	16	
0	100b	Fcpu/8	131.072	2	524.288	8	
0	101b	Fcpu/4	65.536	1	262.144	4	
0	110b	Fcpu/2	32.768	0.5	131.072	2	
0	111b	Fcpu/1	16.384	0.25	65.536	1	
1	000b	Fhosc/128	524.288	8	2097.152	32	
1	001b	Fhosc/64	262.144	4	1048.576	16	
1	010b	Fhosc/32	131.072	2	524.288	8	
1	011b	Fhosc/16	65.536	1	262.144	4	
1	100b	Fhosc/8	32.768	0.5	131.072	2	
1	101b	Fhosc/4	16.384	0.25	65.536	1	
1	110b	Fhosc/2	8.192	0.125	32.768	0.5	
1	111b	Fhosc/1	4.096	0.0625	16.384	0.25	

8.4.3 T2M MODE REGISTER

T2M is T2 timer mode control register to configure T2 operating mode including T2 pre-scalar, clock source, capture parameters...These configurations must be setup completely before enabling T2 timer.

parameteren									
0EAH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
T2M	T2ENB	T2rate2	T2rate1	T2rate0	T2CKS				
Read/Write	R/W	R/W	R/W	R/W	R/W				
After reset	0	0	0	0	0				

Bit 7 **T2ENB:** T2 counter control bit.

0 = Disable T2 timer.

1 = Enable T2 timer.

Bit [6:4] **T2RATE[2:0]:** T2 timer clock source select bits.

T2CKS=0 -> 000 = Fcpu/128, 001 = Fcpu/64, 010 = Fcpu/32, 011 = Fcpu/16, 100 = Fcpu/8, 101 = Fcpu/4, 110 = Fcpu/2,111 = Fcpu/1.

T2CKS=1 -> 000 = Fhosc/128, 001 = Fhosc/64, 010 = Fhosc/32, 011 = Fhosc/16, 100 = Fhosc/8,

101 = Fhosc/4, 110 = Fhosc/2,111 = Fhosc/1.

Bit 3 **T2CKS:** T2 clock source control bit.

1 = Fhosc.

8.4.4 T2CH, T2CL 16-bit COUNTING REGISTERS

T2 counter is 16-bit counter combined with T2CH and T2CL registers. When T2 timer overflow occurs, the T2IRQ flag is set as "1" and cleared by program. The T2CH, T2CL decide T2 interval time through below equation to calculate a correct value. It is necessary to write the correct value to T2CH and T2CL registers, and then enable T2 timer to make sure the fist cycle correct. After one T2 overflow occurs, the T2CH and T2CL registers are loaded correct values by program.

0EBH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CL	T2CL7	T2CL6	T2CL5	T2CL4	T2CL3	T2CL2	T2CL1	T2CL0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

0ECH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CH	T2CH7	T2CH6	T2CH5	T2CH4	T2CH3	T2CH2	T2CH1	T2CH0
Read/Write	R/W							
After Reset	0	0	0	0	0	0	0	0

The T2 timer counter length is 16-bit and points to T2CH and T2CL registers. The timer counter is double buffer design. The core bus is 8-bit, so access 16-bit data needs a latch flag to avoid the transient status affect the 16-bit data mistake occurrence. Under write mode, the write T2CH is the latch control flag. Under read mode, the read T2CL is the latch control flag. So, write T2 16-bit counter is to write T2CH first, and then write T2CL. The 16-bit data is written to 16-bit counter buffer after executing writing T2CL. Read T2 16-bit counter is to read T2CL first, and then read T2CH. The 16-bit data is dumped to T2CH, T2CL after executing reading T2CH.

- Read T2 counter buffer sequence is to read T2CL first, and then read T2CH.
- Write T2 counter buffer sequence is to write T2CH first, and then write T2CL.

The equation of T2 16-bit counter (T2CH, T2CL) initial value is as following.

T2CH, T2CL initial value = 65536 - (T2 interrupt interval time * T2 clock rate)

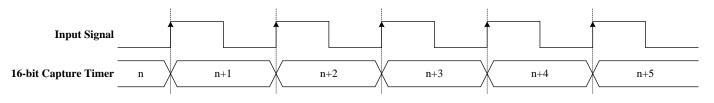
Example: To calculation T2CH and T2CL values to obtain 500ms T2 interval time. T2 clock source is Fcpu = 16MHz/16 = 1MHz. Select T2RATE=000 (Fcpu/128). T2 interval time = 500ms. T2 clock rate = 16MHz/16/128

> T2 16-bit counter initial value = 65536 - (T2 interval time * input clock)= 65536 - (500 ms * 16 MHz / 16 / 128)= $65536 - (500 \text{*} 10^{-3} \text{* } 16 \text{* } 10^{6} / 16 / 128)$ = F0BDH (T2CH = F0H, T2CL = BDH)

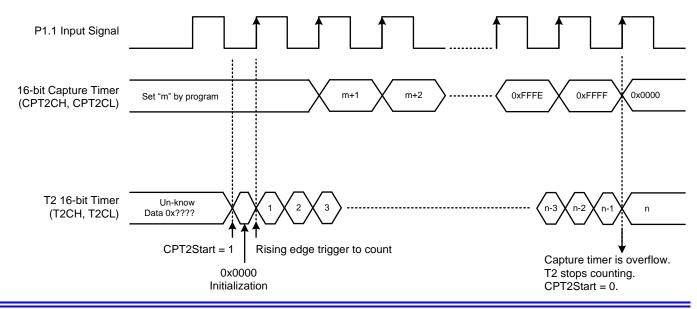
^{0 =} Fcpu.

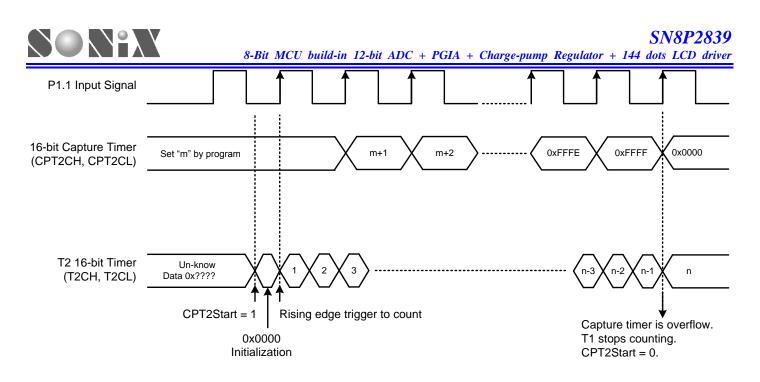
8.4.5 T2 CPATURE TIMER

The 16-bit capture timer is controlled by CPT2EN bit, but the T2 must be enabled. Set T2ENB=1 and CPT2EN=1 to enable capture timer function. The capture timer is a pure counter and no clock source to decide interval time. Capture timer input source is P1.1 pin. CPT2G[1:0] bits select capture timer functions.

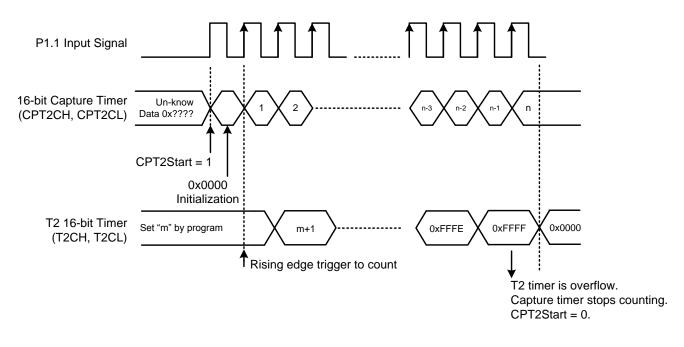

- > CPT2G[1:0] = 00: P1.1 Capture Timer Function.
- CPT2G[1:0] = 01: Measure P1.1 high pulse width.
- CPT2G[1:0] = 10: Measure P1.1 low pulse width.
- CPT2G[1:0] = 11: Measure P1.1 cycle.

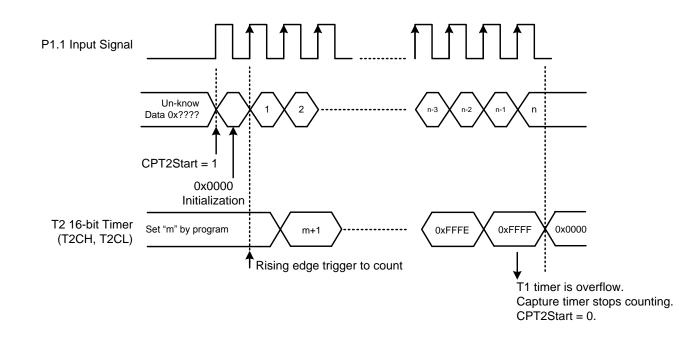
These functions must be combined T2 timer function to implement. The capture timer can measure high pulse width, low pulse width, cycle and capture duration of input signal (P1.1) controlled by CPT2G[1:0]. CPT2Start bit is to execute capture timer function. When CPT2Start is set as "1", the capture timer waits the right trigger edge to active 16-bit counter. The trigger edge finds, and the 16-bit counter starts to count which clock source is T2. When the second right edge finds, the 16-counter stops, CPT2Start is cleared and the T2IRQ actives.


8.4.5.1 Capture Timer


The capture timer function controlled by CPT2G[1:0] bits. Set CPT2G[1:0] = 00 to enable capture timer function. The capture timer function's purpose is to measure the period of a continuous signal. The function includes two modes for difference speed signal controlled by CPT2MD bit. To start capture timer operation is set CPT2Start bit as "1", and the trigger source is the first rising edge of the P1.1 input signal. Before the first rising edge, the capture timer and T2 timer keeps ideal status and wait the riding edge event. When catch the first edge, the capture timer and T2 timer start to count. Each of overflow event occurs (controlled by CPT2MD bit), the capture timer and T2 timer stop counting, CPT2Start bit is cleared, and T2IRQ is set as "1". If T2IEN = 1, the system executes T2 interrupt function and service routine.

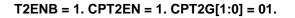
• Capture timer counting trigger source is the rising edge of input signal.


• CPTMD = 0, Low-speed mode (T2ENB = 1. CPT2EN = 1. CPT2G[1:0] = 00.)



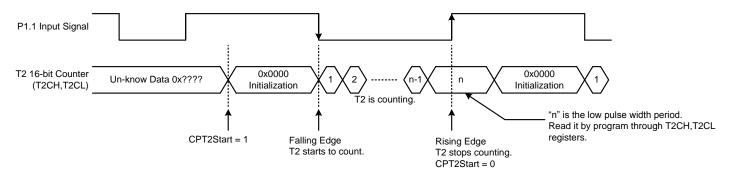
Input signal rate < T2 timer rate. Use T2 timer to measure input signal continuous duration. Set capture timer initial value (CPT2CH, CPT2CL = "m") and clear T2 counter (T2CH, T2CL = 0x0000) by program. Set CPT2Satrt bit ("1") to start capture timer counting. Capture timer and T2 start counting at the first rising edge of input signal. When capture timer overflow occurs (0xFFFF to 0x0000), T2 stops counting, CPT2Start is cleared ("0") automatically, and the T2IRQ sets as "1". The T2 16-bit counter value (T2CH, T2CL = "n") is the continuous signal's duration.

• CPT2MD = 1, High-speed mode (T2ENB = 1. CPT2EN = 1. CPT2G[1:0] = 00.)



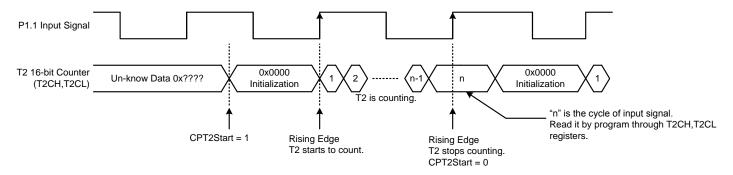
Input signal rate > T2 timer rate. Set a unique timer by T2 timer to measure input signal counts. Set T2 timer initial value (T2CH, T2CL = "m") and clear capture timer counter (CPT2CH, CPT2CL = 0x0000) by program. Set CPT2Satrt bit ("1") to start capture timer counting. Capture timer and T2 start counting at the first rising edge of input signal. When T2 timer overflow occurs (0xFFFF to 0x0000), capture timer stops counting, CPT2Start is cleared ("0") automatically, and the T2IRQ sets as "1". The capture timer 16-bit counter value (CPT2CH, CPT2CL = "n") is the continuous signal's counts.

8.4.5.2 High Pulse Width Measurement



The high pulse width measurement is using rising edge to trigger T2 timer counting and falling edge to stop T2 timer. If set CPT2Start bit at high pulse duration, the capture timer will measure next high pulse until the rising edge occurrence. When the end of measuring high pulse width and T2 timer stops, the T2IRQ sets as "1", the T2 interrupt executes as T2IEN=1, and T2CH, T2CL 16-bit counter stores the period of high pulse width.

8.4.5.3 Low Pulse Width Measurement


T2ENB = 1. CPT2EN = 1. CPT2G[1:0] = 10.

The low pulse width measurement is using falling edge to start T2 timer counting and rising edge to stop T2 timer. If set CPT2Start bit at low pulse duration, the capture timer will measure next low pulse until the falling edge occurrence. When the end of measuring low pulse width and T2 timer stops, the T2IRQ sets as "1", the T2 interrupt executes as T2IEN=1, and T2CH, T2CL 16-bit counter stores the period of low pulse width.

8.4.5.4 Input Cycle Measurement

T2ENB = 1. CPT2EN = 1. CPT2G[1:0] = 11.

The cycle measurement is using rising edge to start and stop T2 timer. If set CPT2Start bit at high or low pulse duration, the capture timer will measure next cycle until the rising edge occurrence. When the end of measuring cycle and T2 timer stops, the T2IRQ sets as "1", the T2 interrupt executes as T2IEN=1, and T2CH, T2CL 16-bit counter stores the period of input cycle.

8.4.6 CAPTURE TIMER CONTROL REGISTERS

0EDH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPT2M	CPT2EN				CPT2MD	CPT2Start	CPT2G1	CPT2G0
Read/Write	R/W				R/W	R/W	R/W	R/W
After Reset	0				0	0	0	0

- Bit 7 **CPT2EN:** Capture timer function control bit.
 - 0 = Disable.
 - 1 = Enable. **T2EN must be enabled.**
- Bit 3 **CPT2MD:** Capture timer mode control bit. 0 = CPT2 overflow mode.
 - 1 = T2 overflow mode.
- Bit 2 **CPT2Start:** Capture timer counter control bit.
 - 0 = Process end.
 - 1 = Start to count and processing.
- Bit [1:0] **CPT2G[1:0]:** Capture timer function control bit.
 - 00 = Capture timer function.
 - 01 = High pulse width measurement.
 - 10 = Low pulse width measurement.
 - 11 = Cycle measurement.

0EEH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPT2CL	CPT2C7	CPT2C6	CPT2C5	CPT2C4	CPT2C3	CPT2C2	CPT2C1	CPT2C0
Read/Write	R/W							
After Reset	0	0	0	0	0	0	0	0

0EFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPT2CH	CPT2C15	CPT2C14	CPT2C13	CPT2C12	CPT2C11	CPT2C10	CPT2C9	CPT2C8
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After Reset	0	0	0	0	0	0	0	0

The capture timer counter length is 16-bit and points to CPT2CH and CPT2CL registers. The timer counter is double buffer design. The core bus is 8-bit, so access 16-bit data needs a latch flag to avoid the transient status affect the 16-bit data mistake occurrence. Under write mode, the write CPT2CL is the latch control flag. Under read mode, the read CPT2CL is the latch control flag. So, write 16-bit counter is to write CPT2CH first, and then write CPT2CL. The 16-bit data is written to 16-bit counter buffer after executing writing CPT2CL. Read 16-bit counter is to read CPT2CL first, and then read CPT2CH. The 16-bit data is dumped to CPT2CH, CPT2CL after executing reading CPT2CL.

- Read capture timer counter buffer sequence is to read CPT2CL first, and then read CPT2CH.
- Write capture timer counter buffer sequence is to write CPT2CH first, and then write CPT2CL.

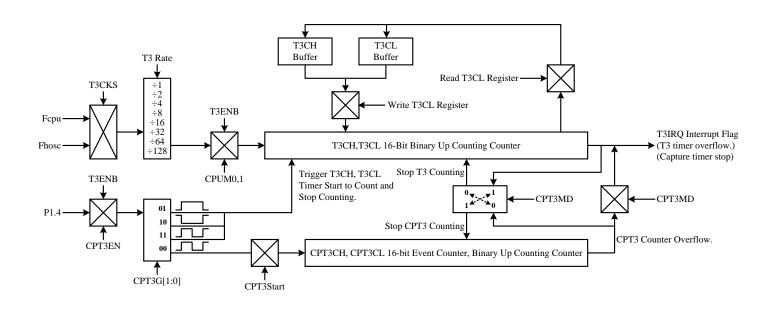
8.4.7 T2 TIMER OPERATION EXPLAME

	er. MOV	A, #0x00	; Clear T2M register.
	BOMOV	T2M, A	
; Set T2 clock ı	rate.		
	MOV B0MOV	A, #0 nnn 0000b T2M, A	; T2rate[2:0] bits.
; Set T2CH, T2		r T2 Interval time.	
	MOV B0MOV	A, # value1 T2CH, A	; Set high byte first.
	MOV B0MOV	A, # value2 T2CL, A	; Set low byte.
; Clear T2IRQ			
	B0BCLR	FT2IRQ	
; Enable T2 tim			· Eachle TO interrupt function
	B0BSET B0BSET	FT2IEN FT2ENB	; Enable T2 interrupt function. ; Enable T2 timer.
• T2 CAPTU	JRE TIMER FO	R CONTINUOUS SIGN	AL MEASUREMENT CONFIGURATION:
; Reset T2 time			
	CLR	T2M	; Clear T2M register.
; Set T2 clock		/enable T2 capture time	
	MOV B0MOV	A, #0 nnnm 000b T2M, A	; "nnn" is T2rate[2:0] for T2 clock rate selection. ; "m" is T2 clock source control bit.
	MOV B0MOV	A, #000000 mm b CPT2M, A	 ; "mm" is CPTG[1:0] for T2 capture timer function selection. ; CPT2G[1:0] = 00b, enable T2 capture timer. ; CPT2G[1:0] = 01b/10b/11b, enable pulse width or cycle measurement.
; Select captur	e timer high-sı	peed/low-speed mode.	
-	BOBCLR	FCPT2MD	; CPT2 overflow mode.
; or	BOBSET	FCPT2MD	; T2 overflow mode.
: Clear T2CH. 1			
; Clear T2CH, ٦	CLR	T2CH	; Clear high byte first.
; Clear T2CH, 1	CLR CLR	T2CH T2CL	; Clear high byte first. ; Clear low byte.
	CLR CPT2CL 16-bit	T2CL	; Clear low byte. inuous signal measurement.
	CLR CPT2CL 16-bit MOV	T2CL capture timer for cont A, #value1	; Clear low byte.
	CLR CPT2CL 16-bit MOV B0MOV	T2CL capture timer for cont A, #value1 CPT2CH, A	; Clear low byte. inuous signal measurement. ; Set high nibble first.
	CLR CPT2CL 16-bit MOV	T2CL capture timer for cont A, #value1	; Clear low byte. inuous signal measurement.
; Set CPT2CH,	CLR CPT2CL 16-bit MOV B0MOV MOV	T2CL capture timer for cont A, #value1 CPT2CH, A A, #value2	; Clear low byte. inuous signal measurement. ; Set high nibble first.
; Set CPT2CH,	CLR CPT2CL 16-bit MOV B0MOV MOV	T2CL capture timer for cont A, #value1 CPT2CH, A A, #value2	; Clear low byte. inuous signal measurement. ; Set high nibble first.
; Set CPT2CH, ; Clear T2IRQ	CLR CPT2CL 16-bit MOV B0MOV MOV B0MOV B0MOV	T2CL a capture timer for cont A, #value1 CPT2CH, A A, #value2 CPT2CL, A	; Clear low byte. inuous signal measurement. ; Set high nibble first. ; Set low byte.
; Set CPT2CH, ; Clear T2IRQ	CLR CPT2CL 16-bit MOV BOMOV MOV BOMOV BOBCLR her, interrupt fu BOBSET	T2CL capture timer for conti A, #value1 CPT2CH, A A, #value2 CPT2CL, A FT2IRQ Inction and T2 capture FT2IEN	; Clear low byte. inuous signal measurement. ; Set high nibble first. ; Set low byte. timer function. ; Enable T2 interrupt function.
; Clear T2IRQ	CLR CPT2CL 16-bit MOV BOMOV MOV BOMOV BOBCLR her, interrupt fu	T2CL capture timer for cont A, #value1 CPT2CH, A A, #value2 CPT2CL, A FT2IRQ Inction and T2 capture	; Clear low byte. inuous signal measurement. ; Set high nibble first. ; Set low byte. timer function.

• T2 CAPTURE TIMER FOR SINGLE CYCLE MEASUREMENT CONFIGURATION:

_		-	
Docot	TЭ	timor	
reset	12	timer.	

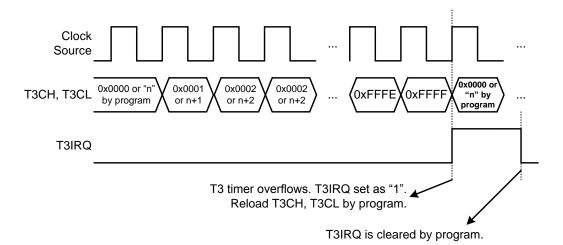
, 10000 12 0110	MOV B0MOV	A, #0x00 T2M, A	; Clear T2M register.
; Set T2 clock r	rate, select input a MOV BOMOV MOV B0MOV	source, and select/en A, #0nnnm000b T2M, A A, #000000mmb CPT2M, A	<pre>able T2 capture timer. ; "nnn" is T2rate[2:0] for T2 clock rate selection. ; "m" is T2 clock source control bit. ; "mm" is CPTG[1:0] for T2 capture timer function selection. ; CPT2G[1:0] = 00b, capture timer function. ; CPT2G[1:0] = 01b, high pulse width measurement. ; CPT2G[1:0] = 10b, low pulse width measurement. ; CPT2G[1:0] = 11b, cycle measurement.</pre>
; Clear T2CH, T	T 2CL. CLR CLR	T2CH T2CL	; Clear high byte first. ; Clear low byte.
; Clear T2IRQ	B0BCLR	FT2IRQ	
; Enable T2 tim	er, interrupt func B0BSET	tion and T2 capture to FT2IEN	imer function. ; Enable T2 interrupt function.
; Set capture ti	BOBSET BOBSET	FT2ENB FCPTEN FCPT2Start	; Enable T2 timer. ; Enable T2 capture function.



8.5 T3 16-bit Timer with Capture Timer Function

8.5.1 OVERVIEW

The T3 timer is a 16-bit binary up timer with basic timer and capture timer functions. The basic timer function supports flag indicator (T3IRQ bit) and interrupt operation (interrupt vector). The interval time is programmable through T3M, T3CH/T3CL 16-bit counter registers. The capture timer supports high pulse width measurement, low pulse width measurement, cycle measurement and continuous duration from P1.4. T3 becomes a timer meter to count external signal time parameters to implement measure application. The main purposes of the T3 timer are as following.


- I6-bit programmable up counting timer: Generate time-out at specific time intervals based on the selected clock frequency.
- **16-bit measurement:** Measure the input signal pulse width and cycle depend on the T3 clock time base to decide the capture timer's resolution. The capture timer builds in programmable trigger edge selection to decide the start-stop trigger event.
- I6-bit capture timer: The 16-bit event counter to detect event source for accumulative capture timer function. The event counter is up counting design.
- Interrupt function: T3 timer function and capture timer function support interrupt function. When T3 timer occurs overflow or capture timer stops counting, the T3IRQ actives and the system points program counter to interrupt vector to do interrupt sequence.
- Green mode function: All T3 functions (timer, capture timer...) keeps running in green mode, but no wake-up function. Timer IRQ actives as any IRQ trigger occurrence, e.g. timer overflow...

8.5.2 T3 TIMER OPERATION

T3 timer is controlled by T3ENB bit. When T3ENB=0, T3 timer stops. When T3ENB=1, T3 timer starts to count. Before enabling T3 timer, setup T3 timer's configurations to select timer function modes, e.g. basic timer, interrupt function...T3 16-bit counter (T3CH, T3CL) increases "1" by timer clock source. When T3 overflow event occurs, T3IRQ flag is set as "1" to indicate overflow and cleared by program. The overflow condition is T3CH, T3CL count from full scale (0xFFFF) to zero scale (0x0000). T3 doesn't build in double buffer, so load T3CH, T3CL by program when T3 timer overflows to fix the correct interval time. If T3 timer interrupt function is enabled (T3IEN=1), the system will execute interrupt procedure. The interrupt procedure is system program counter points to interrupt vector (ORG 0008H) and executes interrupt service routine after T3 overflow occurrence. Clear T3IRQ by program is necessary in interrupt procedure. T3 timer can works in normal mode, slow mode and green mode.

T3 provides different clock sources to implement different applications and configurations. T3 clock source includes Fcpu (instruction cycle) and Fhosc (high speed oscillator) controlled by T3CKS bit. T3CKS bit selects the clock source is from Fcpu or Fhosc. If T3CKS=0, T3 clock source is Fcpu through T3rate[2:0] pre-scalar to decide Fcpu/1~Fcpu/128. If T3CKS=1, T3 clock source is Fhosc through T3rate[2:0] pre-scalar to decide Fcpu/1~Fcpu/128. T3 length is 16-bit (65536 steps), and the one count period is each cycle of input clock.

				T3 Interv	val Time		
тзскѕ	T3rate[2:0]	T3 Clock	Fhosc=1 Fcpu=Fl	•	Fhosc=4MHz, Fcpu=Fhosc/4		
			max. (ms)	Unit (us)	max. (ms)	Unit (us)	
0	000b	Fcpu/128	2097.152	32	8388.608	128	
0	001b	Fcpu/64	1048.576	16	4194.304	64	
0	010b	Fcpu/32	524.288	8	2097.152	32	
0	011b	Fcpu/16	262.144	4	1048.576	16	
0	100b	Fcpu/8	131.072	2	524.288	8	
0	101b	Fcpu/4	65.536	1	262.144	4	
0	110b	Fcpu/2	32.768	0.5	131.072	2	
0	111b	Fcpu/1	16.384	0.25	65.536	1	
1	000b	Fhosc/128	524.288	8	2097.152	32	
1	001b	Fhosc/64	262.144	4	1048.576	16	
1	010b	Fhosc/32	131.072	2	524.288	8	
1	011b	Fhosc/16	65.536	1	262.144	4	
1	100b	Fhosc/8	32.768	0.5	131.072	2	
1	101b	Fhosc/4	16.384	0.25	65.536	1	
1	110b	Fhosc/2	8.192	0.125	32.768	0.5	
1	111b	Fhosc/1	4.096	0.0625	16.384	0.25	

8.5.3 T3M MODE REGISTER

T3M is T3 timer mode control register to configure T3 operating mode including T3 pre-scalar, clock source, capture parameters...These configurations must be setup completely before enabling T3 timer.

0FAH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T3M	T3ENB	T3rate2	T3rate1	T3rate0	T3CKS			
Read/Write	R/W	R/W	R/W	R/W	R/W			
After reset	0	0	0	0	0			

Bit 7 **T3ENB:** T3 counter control bit.

0 = Disable T3 timer.

1 = Enable T3 timer.

Bit [6:4] **T3RATE[2:0]:** T3 timer clock source select bits.

T3CKS=0 -> 000 = Fcpu/128, 001 = Fcpu/64, 010 = Fcpu/32, 011 = Fcpu/16, 100 = Fcpu/8, 101 = Fcpu/4, 110 = Fcpu/2,111 = Fcpu/1.

T3CKS=1 -> 000 = Fhosc/128, 001 = Fhosc/64, 010 = Fhosc/32, 011 = Fhosc/16, 100 = Fhosc/8,

101 = Fhosc/4, 110 = Fhosc/2,111 = Fhosc/1.

Bit 3 **T3CKS:** T3 clock source control bit.

0 = Fcpu.

1 = Fhosc.

8.5.4 T3CH, T3CL 16-bit COUNTING REGISTERS

T3 counter is 16-bit counter combined with T3CH and T3CL registers. When T3 timer overflow occurs, the T3IRQ flag is set as "1" and cleared by program. The T3CH, T3CL decide T3 interval time through below equation to calculate a correct value. It is necessary to write the correct value to T3CH and T3CL registers, and then enable T3 timer to make sure the fist cycle correct. After one T3 overflow occurs, the T3CH and T3CL registers are loaded correct values by program.

0FBH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T3CL	T3CL7	T3CL6	T3CL5	T3CL4	T3CL3	T3CL2	T3CL1	T3CL0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

0FCH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T3CH	T3CH7	T3CH6	T3CH5	T3CH4	T3CH3	T3CH2	T3CH1	T3CH0
Read/Write	R/W							
After Reset	0	0	0	0	0	0	0	0

The T3 timer counter length is 16-bit and points to T3CH and T3CL registers. The timer counter is double buffer design. The core bus is 8-bit, so access 16-bit data needs a latch flag to avoid the transient status affect the 16-bit data mistake occurrence. Under write mode, the write T3CH is the latch control flag. Under read mode, the read T3CL is the latch control flag. So, write T3 16-bit counter is to write T3CH first, and then write T3CL. The 16-bit data is written to 16-bit counter buffer after executing writing T3CL. Read T3 16-bit counter is to read T3CL first, and then read T3CH. The 16-bit data is dumped to T3CH, T3CL after executing reading T3CH.

• Read T3 counter buffer sequence is to read T3CL first, and then read T3CH.

• Write T3 counter buffer sequence is to write T3CH first, and then write T3CL.

The equation of T3 16-bit counter (T3CH, T3CL) initial value is as following.

T3CH, T3CL initial value = 65536 - (T3 interrupt interval time * T3 clock rate)

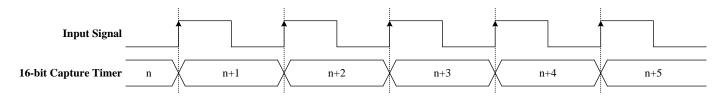
Example: To calculation T3CH and T3CL values to obtain 500ms T3 interval time. T3 clock source is Fcpu = 16MHz/16 = 1MHz. Select T3RATE=000 (Fcpu/128). T3 interval time = 500ms. T3 clock rate = 16MHz/16/128

 $\frac{1}{120}$

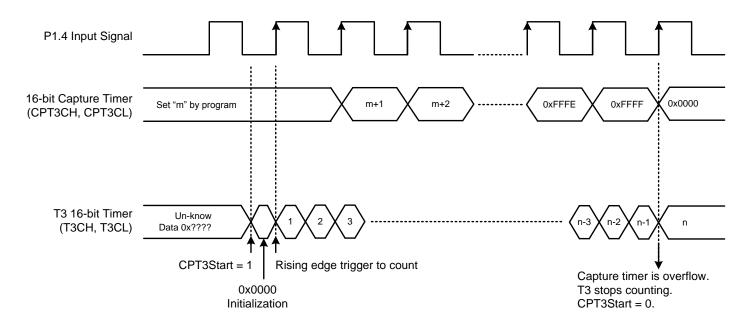
T3 16-bit counter initial value = 65536 - (T3 interval time * input clock)= 65536 - (500 ms * 16 MHz / 16 / 128)= $65536 - (500 * 10^{-3} * 16 * 106 / 16 / 128)$ = F0BDH (T3CH = F0H, T3CL = BDH)

8.5.5 T3 CPATURE TIMER

The 16-bit capture timer is controlled by CPT3EN bit, but the T3 must be enabled. Set T3ENB=1 and CPT3EN=1 to enable capture timer function. The capture timer is a pure counter and no clock source to decide interval time. Capture timer input source is P1.1 pin. CPT3G[1:0] bits select capture timer functions.

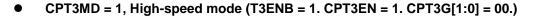

- > CPT3G[1:0] = 00: P1.1 Capture Timer Function.
- > CPT3G[1:0] = 01: Measure P1.1 high pulse width.
- > CPT3G[1:0] = 10: Measure P1.1 low pulse width.
- > CPT3G[1:0] = 11: Measure P1.1 cycle.

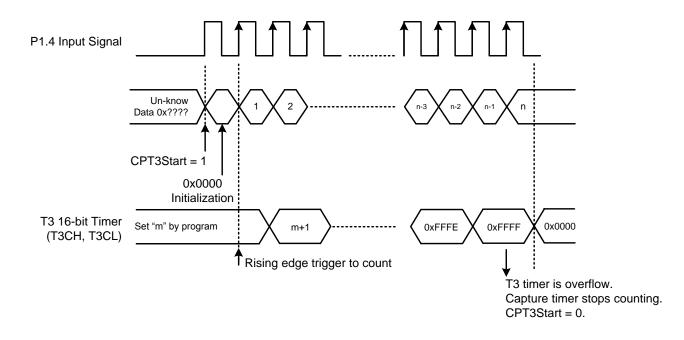
These functions must be combined T3 timer function to implement. The capture timer can measure high pulse width, low pulse width, cycle and capture duration of input signal (P1.1) controlled by CPT3G[1:0]. CPT3Start bit is to execute capture timer function. When CPT3Start is set as "1", the capture timer waits the right trigger edge to active 16-bit counter. The trigger edge finds, and the 16-bit counter starts to count which clock source is T3. When the second right edge finds, the 16-counter stops, CPT3Start is cleared and the T3IRQ actives.

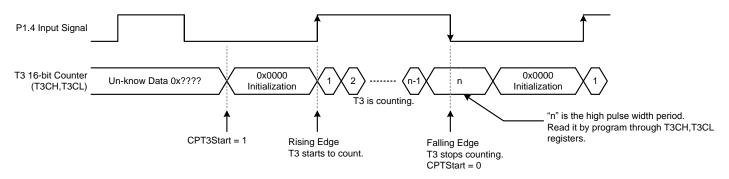

8.5.5.1 Capture Timer

The capture timer function controlled by CPT3G[1:0] bits. Set CPT3G[1:0] = 00 to enable capture timer function. The capture timer function's purpose is to measure the period of a continuous signal. The function includes two modes for difference speed signal controlled by CPT3MD bit. To start capture timer operation is set CPT3Start bit as "1", and the trigger source is the first rising edge of the P1.1 input signal. Before the first rising edge, the capture timer and T3 timer keeps ideal status and wait the riding edge event. When catch the first edge, the capture timer and T3 timer start to count. Each of overflow event occurs (controlled by CPT3MD bit), the capture timer and T3 timer stop counting, CPT3Start bit is cleared, and T3IRQ is set as "1". If T3IEN = 1, the system executes T3 interrupt function and service routine.

• Capture timer counting trigger source is the rising edge of input signal.

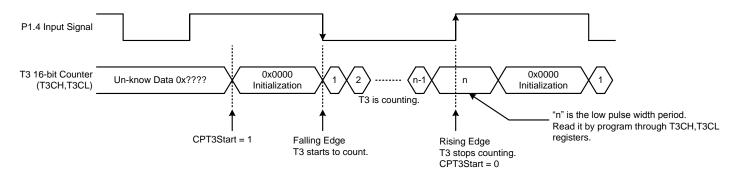



• CPTMD = 0, Low-speed mode (T3ENB = 1. CPT3EN = 1. CPT3G[1:0] = 00.)

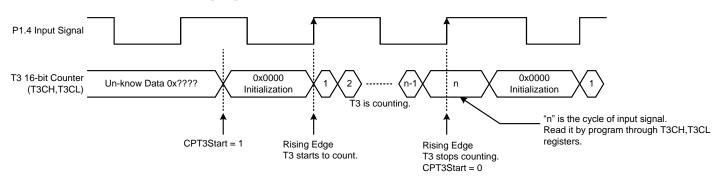

Input signal rate < T3 timer rate. Use T3 timer to measure input signal continuous duration. Set capture timer initial value (CPT3CH, CPT3CL = "m") and clear T3 counter (T3CH, T3CL = 0x0000) by program. Set CPT3Satrt bit ("1") to start capture timer counting. Capture timer and T3 start counting at the first rising edge of input signal. When capture timer overflow occurs (0xFFFF to 0x0000), T3 stops counting, CPT3Start is cleared ("0") automatically, and the T3IRQ sets as "1". The T3 16-bit counter value (T3CH, T3CL = "n") is the continuous signal's duration.

Input signal rate > T3 timer rate. Set a unique timer by T3 timer to measure input signal counts. Set T3 timer initial value (T3CH, T3CL = "m") and clear capture timer counter (CPT3CH, CPT3CL = 0x0000) by program. Set CPT3Satrt bit ("1") to start capture timer counting. Capture timer and T3 start counting at the first rising edge of input signal. When T3 timer overflow occurs (0xFFFF to 0x0000), capture timer stops counting, CPT3Start is cleared ("0") automatically, and the T3IRQ sets as "1". The capture timer 16-bit counter value (CPT3CH, CPT3CL = "n") is the continuous signal's counts.

8.5.5.2 High Pulse Width Measurement


T3ENB = 1. CPT3EN = 1. CPT3G[1:0] = 01.

The high pulse width measurement is using rising edge to trigger T3 timer counting and falling edge to stop T3 timer. If set CPT3Start bit at high pulse duration, the capture timer will measure next high pulse until the rising edge occurrence. When the end of measuring high pulse width and T3 timer stops, the T3IRQ sets as "1", the T3 interrupt executes as T3IEN=1, and T3CH, T3CL 16-bit counter stores the period of high pulse width.


8.5.5.3 Low Pulse Width Measurement

T3ENB = 1. CPT3EN = 1. CPT3G[1:0] = 10.

The low pulse width measurement is using falling edge to start T3 timer counting and rising edge to stop T3 timer. If set CPT3Start bit at low pulse duration, the capture timer will measure next low pulse until the falling edge occurrence. When the end of measuring low pulse width and T3 timer stops, the T3IRQ sets as "1", the T3 interrupt executes as T3IEN=1, and T3CH, T3CL 16-bit counter stores the period of low pulse width.

8.5.5.4 Input Cycle Measurement

T3ENB = 1. CPT3EN = 1. CPT3G[1:0] = 11.

The cycle measurement is using rising edge to start and stop T3 timer. If set CPT3Start bit at high or low pulse duration, the capture timer will measure next cycle until the rising edge occurrence. When the end of measuring cycle and T3 timer stops, the T3IRQ sets as "1", the T3 interrupt executes as T3IEN=1, and T3CH, T3CL 16-bit counter stores the period of input cycle.

8.5.6 CAPTURE TIMER CONTROL REGISTERS

	-		-		-			
0FDH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPT3M	CPT3EN				CPT3MD	CPT3Start	CPT3G1	CPT3G0
Read/Write	R/W				R/W	R/W	R/W	R/W
After Reset	0				0	0	0	0

- Bit 7 **CPT3EN:** Capture timer function control bit.
 - 0 = Disable.

1 = Enable. **T3EN must be enabled.**

- Bit 3 **CPT3MD:** Capture timer mode control bit. 0 = CPT3 overflow mode.
 - 1 = T3 overflow mode.
- Bit 2 **CPT3Start:** Capture timer counter control bit.
 - 0 = Process end.
 - 1 = Start to count and processing.
- Bit [1:0] **CPT3G[1:0]:** Capture timer function control bit.
 - 00 = Capture timer function.
 - 01 = High pulse width measurement.
 - 10 = Low pulse width measurement.
 - 11 = Cycle measurement.

0FEH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPT3CL	CPT3C7	CPT3C6	CPT3C5	CPT3C4	CPT3C3	CPT3C2	CPT3C1	CPT3C0
Read/Write	R/W							
After Reset	0	0	0	0	0	0	0	0

0FFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPT3CH	CPT3C15	CPT3C14	CPT3C13	CPT3C12	CPT3C11	CPT3C10	CPT3C9	CPT3C8
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After Reset	0	0	0	0	0	0	0	0

The capture timer counter length is 16-bit and points to CPT3CH and CPT3CL registers. The timer counter is double buffer design. The core bus is 8-bit, so access 16-bit data needs a latch flag to avoid the transient status affect the 16-bit data mistake occurrence. Under write mode, the write CPT3CL is the latch control flag. Under read mode, the read CPT3CL is the latch control flag. So, write 16-bit counter is to write CPT3CH first, and then write CPT3CL. The 16-bit data is written to 16-bit counter buffer after executing writing CPT3CL. Read 16-bit counter is to read CPT3CL first, and then read CPT3CL. The 16-bit data is dumped to CPT3CH, CPT3CL after executing reading CPT3CL.

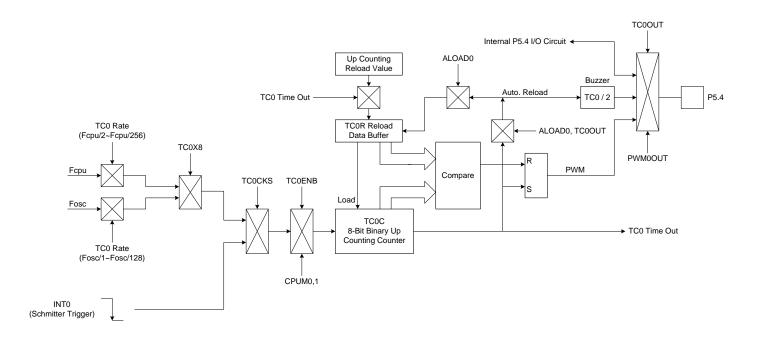
- Read capture timer counter buffer sequence is to read CPT3CL first, and then read CPT3CH.
- Write capture timer counter buffer sequence is to write CPT3CH first, and then write CPT3CL.

	IMER OPER	ATION EXPLAM	E
; Reset T3 time			
	MOV B0MOV	A, #0x00 T3M, A	; Clear T3M register.
; Set T3 clock	rate.		
,	MOV B0MOV	A, #0 nnn 0000b T3M, A	; T3rate[2:0] bits.
: Set T3CH. T3	CL registers for 1	F3 Interval time.	
, ,	MOV	A, #value1	; Set high byte first.
	B0MOV	T3CH, A	
	MOV B0MOV	A, # value2 T3CL, A	; Set low byte.
; Clear T3IRQ			
, oldar ronte	B0BCLR	FT3IRQ	
; Enable T3 tin	ner and interrupt	function.	
	B0BSET B0BSET	FT3IEN FT3ENB	; Enable T3 interrupt function. ; Enable T3 timer.
• T3 CAPT	URE TIMER FOR	CONTINUOUS SIGNA	L MEASUREMENT CONFIGURATION:
; Reset T3 time	er.		
	CLR	ТЗМ	; Clear T3M register.
; Set T3 clock		nable T3 capture time	
	MOV	A, #0 nnnm 000b	; "nnn" is T3rate[2:0] for T3 clock rate selection.
	B0MOV MOV	T3M, A A, #000000 mm b	; "m" is T3 clock source control bit. ; "mm" is CPTG[1:0] for T3 capture timer function selection.
	BOMOV	CPT3M, A	; $CPT3G[1:0] = 00b$, enable T3 capture timer.
			; CPT3G[1:0] = 01b/10b/11b, enable pulse width or cycle measurement.
· Soloct contu	ro timor high-spo	ed/low-speed mode.	
, Select captur	BOBCLR	FCPT3MD	; CPT3 overflow mode.
; or			,
	BOBSET	FCPT3MD	; T3 overflow mode.
; Clear T3CH,	T3CL.		
, clour roori,	CLR	ТЗСН	; Clear high byte first.
	CLR	T3CL	; Clear low byte.
: Set CPT3CH	CPT3CL 16-bit c	apture timer for conti	nuous signal measurement.
, cot or room,	MOV	A, #value1	; Set high nibble first.
	B0MOV	CPT3CH, A	, 3
	MOV	A, #value2	; Set low byte.
	B0MOV	CPT3CL, A	
; Clear T3IRQ			
	B0BCLR	FT3IRQ	
: Enable T3 tin	ner. interrunt fund	ction and T3 capture t	timer function.
, <u></u>	BOBSET	FT3IEN	; Enable T3 interrupt function.
	BOBSET	FT3ENB	; Enable T3 timer.
	BOBSET	FCPT3EN	; Enable T3 capture function.
; Set capture t	imer start bit.		
-	BOBSET	FCPT3Start	

• T3 CAPTURE TIMER FOR SINGLE CYCLE MEASUREMENT CONFIGURATION:

•	Reset	Т3	timer.	
,	NGOGL		union.	

, reset to time	MOV B0MOV	A, #0x00 T3M, A	; Clear T3M register.
; Set T3 clock i	rate, select input a MOV BOMOV MOV B0MOV	source, and select/en A, #0nnnm000b T3M, A A, #000000mmb CPT3M, A	<pre>able T3 capture timer. ; "nnn" is T3rate[2:0] for T3 clock rate selection. ; "m" is T3 clock source control bit. ; "mm" is CPTG[1:0] for T3 capture timer function selection. ; CPT3G[1:0] = 00b, capture timer function. ; CPT3G[1:0] = 01b, high pulse width measurement. ; CPT3G[1:0] = 10b, low pulse width measurement. ; CPT3G[1:0] = 11b, cycle measurement.</pre>
; Clear T3CH, 1	T 3CL. CLR CLR	T3CH T3CL	; Clear high byte first. ; Clear low byte.
; Clear T3IRQ	B0BCLR	FT3IRQ	
; Enable T3 tim	B0BSET B0BSET	tion and T3 capture t FT3IEN FT3ENB	; Enable T3 interrupt function. ; Enable T3 timer.
; Set capture ti	B0BSET mer start bit. B0BSET	FCPTEN FCPT3Start	; Enable T3 capture function.


8.6 TIMER/COUNTER 0 (TC0)

8.6.1 OVERVIEW

The TC0 is an 8-bit binary up counting timer with double buffers. TC0 has two clock sources including internal clock and external clock for counting a precision time. The internal clock source is from Fcpu or Fosc controlled by TC0X8 flag to get faster clock source (Fosc). The external clock is INT0 from P0.0 pin (Falling edge trigger). Using TC0M register selects TC0C's clock source from internal or external. If TC0 timer occurs an overflow, it will continue counting and issue a time-out signal to trigger TC0 interrupt to request interrupt service. TC0 overflow time is 0xFF to 0X00 normally. Under PWM mode, TC0 overflow is decided by PWM cycle controlled by ALOAD0 and TC0OUT bits.

The main purposes of the TC0 timer is as following.

- 8-bit programmable up counting timer: Generates interrupts at specific time intervals based on the selected clock frequency.
- External event counter: Counts system "events" based on falling edge detection of external clock signals at the P00 input pin.
- Green mode wakeup function: TC0 can be green mode wake-up time as TC0GN = 1. System will be wake-up by TC0 time out.
- Buzzer output
- PWM output

8.6.2 TCOM MODE REGISTER

0DAH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC0M	TC0ENB	TC0rate2	TC0rate1	TC0rate0	TC0CKS	ALOAD0	TC00UT	PWM0OUT
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0

- Bit 0 **PWM0OUT:** PWM output control bit. 0 = Disable PWM output.
 - 1 = Enable PWM output. PWM duty controlled by TC0OUT, ALOAD0 bits.
- Bit 1 **TCOOUT:** TC0 time out toggle signal output control bit. **Only valid when PWM0OUT = 0.** 0 = Disable, P5.4 is I/O function.
 - 1 = Enable, P5.4 is output TC0OUT signal.
- Bit 2 ALOAD0: Auto-reload control bit. Only valid when PWM0OUT = 0. 0 = Disable TC0 auto-reload function. 1 = Enable TC0 auto-reload function.
- Bit 3 **TCOCKS:** TCO clock source select bit. 0 = Internal clock (Fcpu or Fosc).
 - 1 = External clock from P0.0/INT0 pin.
- Bit [6:4] TCORATE[2:0]: TC0 internal clock select bits.

TCORATE [2:0]	TC0X8 = 0	TC0X8 = 1
000	Fcpu / 256	Fosc / 128
001	Fcpu / 128	Fosc / 64
010	Fcpu / 64	Fosc / 32
011	Fcpu / 32	Fosc / 16
100	Fcpu / 16	Fosc / 8
101	Fcpu / 8	Fosc / 4
110	Fcpu / 4	Fosc / 2
111	Fcpu / 2	Fosc / 1

- Bit 7 **TC0ENB:** TC0 counter control bit.
 - 0 = Disable TC0 timer.
 - 1 = Enable TC0 timer.

Note: When TC0CKS=1, TC0 became an external event counter and TC0RATE is useless. No more P0.0 interrupt request will be raised. (P0.0IRQ will be always 0).

8.6.3 TC0X8 FLAG

0D8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TOM	T0ENB	T0rate2	T0rate1	T0rate0	TC1X8	TC0X8	TC0GN	TOTB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0

Bit 2 TC0X8: TC0 internal clock source control bit.

0 = TC0 internal clock source is Fcpu. TC0RATE is from Fcpu/2~Fcpu/256.

1 = TC0 internal clock source is Fosc. TC0RATE is from Fosc/1~Fosc/128.

Note: Under TC0 event counter mode (TC0CKS=1), TC0X8 bit and TC0RATE are useless.

8.6.4 TC0C COUNTING REGISTER

TCOC is an 8-bit counter register for TC0 interval time control.

0DBH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC0C	TC0C7	TC0C6	TC0C5	TC0C4	TC0C3	TC0C2	TC0C1	TC0C0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

The equation of TC0C initial value is as following.

TC0C initial value = N - (TC0 interrupt interval time * input clock)

N is TC0 overflow boundary number. TC0 timer overflow time has six types (TC0 timer, TC0 event counter, TC0 Fcpu clock source, TC0 Fosc clock source, PWM mode and no PWM mode). These parameters decide TC0 overflow time and valid value as follow table.

TC0CKS	TC0X8	PWM0	ALOAD0	TC0OUT	Ν	TC0C valid value	TC0C value binary type	Remark
	0	0	Х	Х	256	0x00~0xFF	00000000b~1111111b	Overflow per 256 count
	0	1	0	0	256	0x00~0xFF	00000000b~1111111b	Overflow per 256 count
	(Fcpu/2~	1	0	1	64	0x00~0x3F	xx000000b~xx111111b	Overflow per 64 count
	(Fcpu/256)	1	1	0	32	0x00~0x1F	xxx00000b~xxx11111b	Overflow per 32 count
0	1 cpu/230)	1	1	1	16	0x00~0x0F	xxxx0000b~xxxx1111b	Overflow per 16 count
0		0	х	х	256	0x00~0xFF	00000000b~1111111b	Overflow per 256 count
	1	1	0	0	256	0x00~0xFF	00000000b~1111111b	Overflow per 256 count
	(Fosc/1~	1	0	1	64	0x00~0x3F	xx000000b~xx111111b	Overflow per 64 count
	Fosc/128)	1	1	0	32	0x00~0x1F	xxx00000b~xxx11111b	Overflow per 32 count
		1	1	1	16	0x00~0x0F	xxxx0000b~xxxx1111b	Overflow per 16 count
1	-	-	-	-	256	0x00~0xFF	00000000b~1111111b	Overflow per 256 count

Example: To set 10ms interval time for TC0 interrupt. TC0 clock source is Fcpu (TC0KS=0, TC0X8=0) and no PWM output (PWM0=0). High clock is external 4MHz. Fcpu=Fosc/4. Select TC0RATE=010 (Fcpu/64).

> TCOC initial value = N - (TC0 interrupt interval time * input clock) = 256 - (10ms * 4MHz / 4 / 64)= $256 - (10^2 * 4 * 106 / 4 / 64)$ = 100= 64H

The basic timer table interval time of TC0, TC0X8 = 0.

TCODATE	TCOCLOCK	High speed mode	(Fcpu = 4MHz / 4)	Low speed mode (Fcpu = 32768Hz / 4)		
ICURATE	TCUCLOCK	Max overflow interval	One step = max/256	Max overflow interval	One step = max/256	
000	Fcpu/256	65.536 ms	256 us	8000 ms	31250 us	
001	Fcpu/128	32.768 ms	128 us	4000 ms	15625 us	
010	Fcpu/64	16.384 ms	64 us	2000 ms	7812.5 us	
011	Fcpu/32	8.192 ms	32 us	1000 ms	3906.25 us	
100	Fcpu/16	4.096 ms	16 us	500 ms	1953.125 us	
101	Fcpu/8	2.048 ms	8 us	250 ms	976.563 us	
110	Fcpu/4	1.024 ms	4 us	125 ms	488.281 us	
111	Fcpu/2	0.512 ms	2 us	62.5 ms	244.141 us	

The basic timer table interval time of TC0, TC0X8 = 1.

TCODATE	TCOCLOCK	High speed mode	(Fcpu = 4MHz / 4)	Low speed mode (Fcpu = 32768Hz / 4)		
ICURATE	TCUCLOCK	Max overflow interval	One step = max/256	Max overflow interval	One step = max/256	
000	Fosc/128	8.192 ms	32 us	1000 ms	7812.5 us	
001	Fosc/64	4.096 ms	16 us	500 ms	3906.25 us	
010	Fosc/32	2.048 ms	8 us	250 ms	1953.125 us	
011	Fosc/16	1.024 ms	4 us	125 ms	976.563 us	
100	Fosc/8	0.512 ms	2 us	62.5 ms	488.281 us	
101	Fosc/4	0.256 ms	1 us	31.25 ms	244.141 us	
110	Fosc/2	0.128 ms	0.5 us	15.625 ms	122.07 us	
111	Fosc/1	0.064 ms	0.25 us	7.813 ms	61.035 us	

8.6.5 TCOR AUTO-LOAD REGISTER

TC0 timer is with auto-load function controlled by ALOAD0 bit of TC0M. When TC0C overflow occurring, TC0R value will load to TC0C by system. It is easy to generate an accurate time, and users don't reset TC0C during interrupt service routine.

TC0 is double buffer design. If new TC0R value is set by program, the new value is stored in 1st buffer. Until TC0 overflow occurs, the new value moves to real TC0R buffer. This way can avoid TC0 interval time error and glitch in PWM and Buzzer output.

* Note: Under PWM mode, auto-load is enabled automatically. The ALOAD0 bit is selecting overflow boundary.

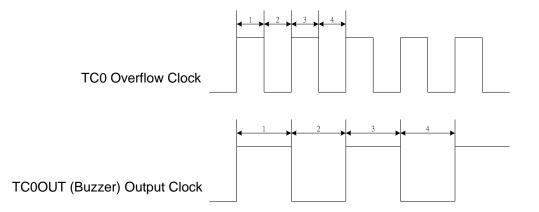
0CDH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC0R	TC0R7	TC0R6	TC0R5	TC0R4	TC0R3	TC0R2	TC0R1	TC0R0
Read/Write	W	W	W	W	W	W	W	W
After reset	0	0	0	0	0	0	0	0

The equation of TCOR initial value is as following.

TC0R initial value = N - (TC0 interrupt interval time * input clock)

N is TC0 overflow boundary number. TC0 timer overflow time has six types (TC0 timer, TC0 event counter, TC0 Fcpu clock source, TC0 Fosc clock source, PWM mode and no PWM mode). These parameters decide TC0 overflow time and valid value as follow table.

TCOCKS	TC0X8	PWM0	ALOAD0	TCOOUT	Ν	TC0R valid value	TC0R value binary type	
	0	0	х	Х	256	0x00~0xFF	00000000b~1111111b	
	0	1	0	0	256	0x00~0xFF	00000000b~1111111b	
	(Fcpu/2~	1	0	1	64	0x00~0x3F	xx000000b~xx111111b	
	(FCpu/2~ Fcpu/256)	1	1	0	32	0x00~0x1F	xxx00000b~xxx11111b	
0	i cpu/250)	1	1	1	16	0x00~0x0F	xxxx0000b~xxxx1111b	
0		0	Х	Х	256	0x00~0xFF	0000000b~1111111b	
	1	1	0	0	256	0x00~0xFF	00000000b~11111111b	
	(Fosc/1~	1	0	1	64	0x00~0x3F	xx000000b~xx111111b	
	Fosc/128)	Fosc/128)	1	1	0	32	0x00~0x1F	xxx00000b~xxx11111b
		1	1	1	16	0x00~0x0F	xxxx0000b~xxxx1111b	
1	-	-	-	-	256	0x00~0xFF	00000000b~1111111b	


Example: To set 10ms interval time for TC0 interrupt. TC0 clock source is Fcpu (TC0KS=0, TC0X8=0) and no PWM output (PWM0=0). High clock is external 4MHz. Fcpu=Fosc/4. Select TC0RATE=010 (Fcpu/64).

> TCOR initial value = N - (TCO interrupt interval time * input clock) = 256 - (10ms * 4MHz / 4 / 64)= 256 - (10 - 2 * 4 * 106 / 4 / 64)= 100= 64H

8.6.6 TC0 CLOCK FREQUENCY OUTPUT (BUZZER)

Buzzer output (TC0OUT) is from TC0 timer/counter frequency output function. By setting the TC0 clock frequency, the clock signal is output to P5.4 and the P5.4 general purpose I/O function is auto-disable. The TC0OUT frequency is divided by 2 from TC0 interval time. TC0OUT frequency is 1/2 TC0 frequency. The TC0 clock has many combinations and easily to make difference frequency. The TC0OUT frequency waveform is as following.

Example: Setup TC0OUT output from TC0 to TC0OUT (P5.4). The external high-speed clock is 4MHz. The TC0OUT frequency is 0.5KHz. Because the TC0OUT signal is divided by 2, set the TC0 clock to 1KHz. The TC0 clock source is from external oscillator clock. T0C rate is Fcpu/4. The TC0RATE2~TC0RATE1 = 110. TC0C = TC0R = 131.

MOV B0MOV	A,#01100000B TC0M,A	; Set the TC0 rate to Fcpu/4
MOV B0MOV B0MOV	A,#131 TC0C,A TC0R,A	; Set the auto-reload reference value
B0BSET B0BSET B0BSET	FTC0OUT FALOAD1 FTC0ENB	; Enable TC0 output to P5.4 and disable P5.4 I/O function ; Enable TC0 auto-reload function ; Enable TC0 timer

Note: Buzzer output is enable, and "PWM0OUT" must be "0".

8.6.7 TC0 TIMER OPERATION SEQUENCE

TC0 timer operation includes timer interrupt, event counter, TC0OUT and PWM. The sequence of setup TC0 timer is as following.

Stop TC0 timer counting, disable TC0 interrupt function and clear TC0 interrupt request flag. æ **B0BCLR FTC0ENB** ; TC0 timer, TC0OUT and PWM stop. **FTCOIEN** ; TC0 interrupt function is disabled. **B0BCLR FTC0IRQ** ; TC0 interrupt request flag is cleared. **B0BCLR** Set TC0 timer rate. (Besides event counter mode.) :The TC0 rate control bits exist in bit4~bit6 of TC0M. The MOV A, #0xxx0000b ; value is from x000xxxxb~x111xxxxb. **B0MOV** TC0M,A ; TC0 interrupt function is disabled. Set TC0 timer clock source. : Select TC0 internal / external clock source. **B0BCLR** FTC0CKS ; Select TC0 internal clock source. or **BOBSET** FTC0CKS : Select TC0 external clock source. ; Select TC0 Fcpu / Fosc internal clock source . **B0BCLR** FTC0X8 ; Select TC0 Fcpu internal clock source. or **BOBSET** FTC0X8 ; Select TC0 Fosc internal clock source.

Note: TC0X8 is useless in TC0 external clock source mode.

Set TC0 timer auto-load mode.

or	B0BCLR	FALOAD0	; Enable TC0 auto reload function.
	BOBSET	FALOAD0	; Disable TC0 auto reload function.

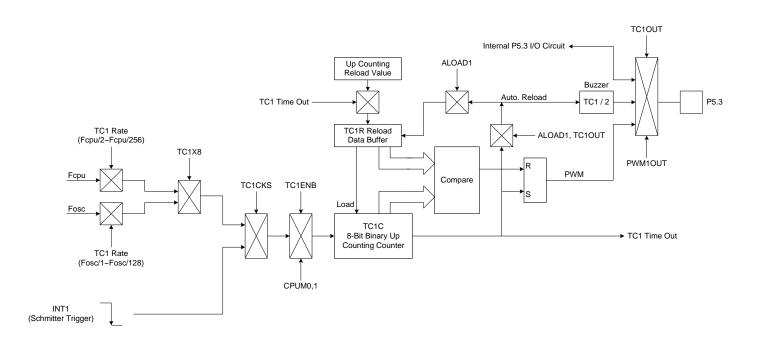
Set TC0 interrupt interval time, TC0OUT (Buzzer) frequency or PWM duty cycle.

: Set TC0 interrupt interval time. TC0OUT (Buzzer) frequency or PWM duty.

,	MOV B0MOV	A,#7FH TC0C,A	; TC0C and TC0R value is decided by TC0 mode. ; Set TC0C value.
	BOMOV	TCOR,A	; Set TC0R value under auto reload mode or PWM mode.
; In PWM mode	e, set PWM cycle.		
	B0BCLR	FALOAD0	; ALOAD0, TC0OUT = 00, PWM cycle boundary is
	B0BCLR	FTC0OUT	; 0~255.
or	B0BCLR	FALOAD0	; ALOAD0, TC0OUT = 01, PWM cycle boundary is
	BOBSET	FTC0OUT	; $0 \sim 63$.
or			
	B0BSET	FALOAD0	; ALOAD0, TC0OUT = 10, PWM cycle boundary is
	B0BCLR	FTC0OUT	; 0~31.
or	B0BSET	FALOAD0	; ALOAD0, TC0OUT = 11, PWM cycle boundary is
	BOBSET	FTC0OUT	; $0 \sim 15$.
	DUDULI	1100001	, • 10.

Set TC0 timer function mode.

	B0BSET	FTCOIEN	; Enable TC0 interrupt function.
or	BOBSET	FTC0OUT	; Enable TC0OUT (Buzzer) function.
or	B0BSET	FPWM0OUT	; Enable PWM function.
Ē	Enable TC0 timer.		
	BOBSET	FTC0ENB	; Enable TC0 timer.


8.7 TIMER/COUNTER 1 (TC1)

8.7.1 OVERVIEW

The TC1 is an 8-bit binary up counting timer with double buffers. TC1 has two clock sources including internal clock and external clock for counting a precision time. The internal clock source is from Fcpu or Fosc controlled by TC1X8 flag to get faster clock source (Fosc). The external clock is INT1 from P0.1 pin (Falling edge trigger). Using TC1M register selects TC1C's clock source from internal or external. If TC1 timer occurs an overflow, it will continue counting and issue a time-out signal to trigger TC1 interrupt to request interrupt service. TC1 overflow time is 0xFF to 0X00 normally. Under PWM mode, TC1 overflow is decided by PWM cycle controlled by ALOAD1 and TC1OUT bits.

The main purposes of the TC1 timer is as following.

- 8-bit programmable up counting timer: Generates interrupts at specific time intervals based on the selected clock frequency.
- External event counter: Counts system "events" based on falling edge detection of external clock signals at the P01 input pin.
- · Buzzer output
- PWM output

8.7.2 TC1M MODE REGISTER

0DCH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1M	TC1ENB	TC1rate2	TC1rate1	TC1rate0	TC1CKS	ALOAD1	TC10UT	PWM1OUT
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0

- Bit 0 **PWM1OUT:** PWM output control bit. 0 = Disable PWM output.
 - 0 = Disable PVVV output.
 - 1 = Enable PWM output. PWM duty controlled by TC1OUT, ALOAD1 bits.
- Bit 1 **TC1OUT:** TC1 time out toggle signal output control bit. **Only valid when PWM1OUT = 0.**
 - 0 = Disable, P5.3 is I/O function.
 - 1 = Enable, P5.3 is output TC1OUT signal.
- Bit 2 ALOAD1: Auto-reload control bit. Only valid when PWM1OUT = 0. 0 = Disable TC1 auto-reload function. 1 = Enable TC1 auto-reload function.
- Bit 3 **TC1CKS:** TC1 clock source select bit. 0 = Internal clock (Fcpu or Fosc). 1 = External clock from P0.1/INT1 pin.
 - T = External clock from P0.1/INTT pin.
- Bit [6:4] **TC1RATE[2:0]:** TC1 internal clock select bits.

TC1RATE [2:0]	TC1X8 = 0	TC1X8 = 1
000	Fcpu / 256	Fosc / 128
001	Fcpu / 128	Fosc / 64
010	Fcpu / 64	Fosc / 32
011	Fcpu / 32	Fosc / 16
100	Fcpu / 16	Fosc / 8
101	Fcpu / 8	Fosc / 4
110	Fcpu / 4	Fosc / 2
111	Fcpu / 2	Fosc / 1

- Bit 7 **TC1ENB:** TC1 counter control bit.
 - 0 = Disable TC1 timer.
 - 1 = Enable TC1 timer.

* Note: When TC1CKS=1, TC1 became an external event counter and TC1RATE is useless. No more P0.1 interrupt request will be raised. (P0.1IRQ will be always 0).

8.7.3 TC1X8 FLAG

0D8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TOM	T0ENB	T0rate2	T0rate1	T0rate0	TC1X8	TC0X8	TC0GN	T0TB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0

Bit 3 **TC1X8:** TC1 internal clock source control bit.

0 = TC1 internal clock source is Fcpu. TC1RATE is from Fcpu/2~Fcpu/256.

1 = TC1 internal clock source is Fosc. TC1RATE is from Fosc/1~Fosc/128.

Note: Under TC1 event counter mode (TC1CKS=1), TC1X8 bit and TC1RATE are useless.

8.7.4 TC1C COUNTING REGISTER

TC1C is an 8-bit counter register for TC1 interval time control.

0DDH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1C	TC1C7	TC1C6	TC1C5	TC1C4	TC1C3	TC1C2	TC1C1	TC1C0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

The equation of TC1C initial value is as following.

TC1C initial value = N - (TC1 interrupt interval time * input clock)

N is TC1 overflow boundary number. TC1 timer overflow time has six types (TC1 timer, TC1 event counter, TC1 Fcpu clock source, TC1 Fosc clock source, PWM mode and no PWM mode). These parameters decide TC1 overflow time and valid value as follow table.

TC1CKS	TC1X8	PWM1	ALOAD1	TC10UT	Ν	TC1C valid value	TC1C value binary type	Remark
	0	0	х	Х	256	0x00~0xFF	00000000b~1111111b	Overflow per 256 count
	0	1	0	0	256	0x00~0xFF	00000000b~1111111b	Overflow per 256 count
	(Ecou/2	1	0	1	64	0x00~0x3F	xx000000b~xx111111b	Overflow per 64 count
	(Fcpu/2~ – Fcpu/256) –	1	1	0	32	0x00~0x1F	xxx00000b~xxx11111b	Overflow per 32 count
0	1 cpu/200)	1	1	1	16	0x00~0x0F	xxxx0000b~xxxx1111b	Overflow per 16 count
0		0	Х	Х	256	0x00~0xFF	00000000b~1111111b	Overflow per 256 count
	1	1	0	0	256	0x00~0xFF	00000000b~1111111b	Overflow per 256 count
	(Fosc/1~	1	0	1	64	0x00~0x3F	xx000000b~xx111111b	Overflow per 64 count
	Fosc/128)	1	1	0	32	0x00~0x1F	xxx00000b~xxx11111b	Overflow per 32 count
		1	1	1	16	0x00~0x0F	xxxx0000b~xxxx1111b	Overflow per 16 count
1	-	-	-	-	256	0x00~0xFF	00000000b~1111111b	Overflow per 256 count

Example: To set 10ms interval time for TC1 interrupt. TC1 clock source is Fcpu (TC1KS=0, TC1X8=0) and no PWM output (PWM1=0). High clock is external 4MHz. Fcpu=Fosc/4. Select TC1RATE=010 (Fcpu/64).

> TC1C initial value = N - (TC1 interrupt interval time * input clock)= 256 - (10ms * 4MHz / 4 / 64)= 256 - (10⁻² * 4 * 10⁶ / 4 / 64)= 100= 64H

The basic timer table interval time of TC1, TC1X8 = 0.

	TC1CLOCK	High speed mode (Fcpu = 4MHz / 4)		Low speed mode (F	cpu = 32768Hz / 4)
TUTKATE	TETELOCK	Max overflow interval	One step = max/256	Max overflow interval	One step = max/256
000	Fcpu/256	65.536 ms	256 us	8000 ms	31250 us
001	Fcpu/128	32.768 ms	128 us	4000 ms	15625 us
010	Fcpu/64	16.384 ms	64 us	2000 ms	7812.5 us
011	Fcpu/32	8.192 ms	32 us	1000 ms	3906.25 us
100	Fcpu/16	4.096 ms	16 us	500 ms	1953.125 us
101	Fcpu/8	2.048 ms	8 us	250 ms	976.563 us
110	Fcpu/4	1.024 ms	4 us	125 ms	488.281 us
111	Fcpu/2	0.512 ms	2 us	62.5 ms	244.141 us

The basic timer table interval time of TC1, TC1X8 = 1.

	TC1CLOCK	High speed mode	(Fcpu = 4MHz / 4)	Low speed mode (Fcpu = 32768Hz / 4)		
ICIKAIE	TCTCLOCK	Max overflow interval	One step = max/256	Max overflow interval	One step = max/256	
000	Fosc/128	8.192 ms	32 us	1000 ms	7812.5 us	
001	Fosc/64	4.096 ms	16 us	500 ms	3906.25 us	
010	Fosc/32	2.048 ms	8 us	250 ms	1953.125 us	
011	Fosc/16	1.024 ms	4 us	125 ms	976.563 us	
100	Fosc/8	0.512 ms	2 us	62.5 ms	488.281 us	
101	Fosc/4	0.256 ms	1 us	31.25 ms	244.141 us	
110	Fosc/2	0.128 ms	0.5 us	15.625 ms	122.07 us	
111	Fosc/1	0.064 ms	0.25 us	7.813 ms	61.035 us	

8.7.5 TC1R AUTO-LOAD REGISTER

TC1 timer is with auto-load function controlled by ALOAD1 bit of TC1M. When TC1C overflow occurring, TC1R value will load to TC1C by system. It is easy to generate an accurate time, and users don't reset TC1C during interrupt service routine.

TC1 is double buffer design. If new TC1R value is set by program, the new value is stored in 1st buffer. Until TC1 overflow occurs, the new value moves to real TC1R buffer. This way can avoid TC1 interval time error and glitch in PWM and Buzzer output.

* Note: Under PWM mode, auto-load is enabled automatically. The ALOAD1 bit is selecting overflow boundary.

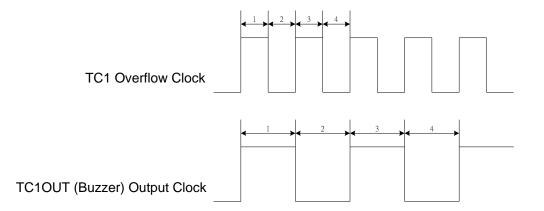
0DEH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1R	TC1R7	TC1R6	TC1R5	TC1R4	TC1R3	TC1R2	TC1R1	TC1R0
Read/Write	W	W	W	W	W	W	W	W
After reset	0	0	0	0	0	0	0	0

The equation of TC1R initial value is as following.

TC1R initial value = N - (TC1 interrupt interval time * input clock)

N is TC1 overflow boundary number. TC1 timer overflow time has six types (TC1 timer, TC1 event counter, TC1 Fcpu clock source, TC1 Fosc clock source, PWM mode and no PWM mode). These parameters decide TC1 overflow time and valid value as follow table.

TC1CKS	TC1X8	PWM1	ALOAD1	TC10UT	Ν	TC1R valid value	TC1R value binary type
		0	х	Х	256	0x00~0xFF	0000000b~1111111b
	0	1	0	0	256	0x00~0xFF	0000000b~1111111b
	(Ecou/2	1	0	1	64	0x00~0x3F	xx000000b~xx111111b
	(Fcpu/2~ Fcpu/256)	1	1	0	32	0x00~0x1F	xxx00000b~xxx11111b
0	1 Cpu/230)	1	1	1	16	0x00~0x0F	xxxx0000b~xxxx1111b
0		0	Х	Х	256	0x00~0xFF	0000000b~1111111b
	1	1	0	0	256	0x00~0xFF	0000000b~1111111b
	(Fosc/1~	1	0	1	64	0x00~0x3F	xx000000b~xx111111b
	Fosc/128)	1	1	0	32	0x00~0x1F	xxx00000b~xxx11111b
		1	1	1	16	0x00~0x0F	xxxx0000b~xxxx1111b
1	-	-	-	-	256	0x00~0xFF	00000000b~1111111b


Example: To set 10ms interval time for TC1 interrupt. TC1 clock source is Fcpu (TC1KS=0, TC1X8=0) and no PWM output (PWM1=0). High clock is external 4MHz. Fcpu=Fosc/4. Select TC1RATE=010 (Fcpu/64).

> TC1R initial value = N - (TC1 interrupt interval time * input clock) = 256 - (10ms * 4MHz / 4 / 64)= $256 - (10^{-2} * 4 * 10^{6} / 4 / 64)$ = 100= 64H

8.7.6 TC1 CLOCK FREQUENCY OUTPUT (BUZZER)

Buzzer output (TC1OUT) is from TC1 timer/counter frequency output function. By setting the TC1 clock frequency, the clock signal is output to P5.3 and the P5.3 general purpose I/O function is auto-disable. The TC1OUT frequency is divided by 2 from TC1 interval time. TC1OUT frequency is 1/2 TC1 frequency. The TC1 clock has many combinations and easily to make difference frequency. The TC1OUT frequency waveform is as following.

Example: Setup TC1OUT output from TC1 to TC1OUT (P5.3). The external high-speed clock is 4MHz. The TC1OUT frequency is 0.5KHz. Because the TC1OUT signal is divided by 2, set the TC1 clock to 1KHz. The TC1 clock source is from external oscillator clock. TC1 rate is Fcpu/4. The TC1RATE2~TC1RATE1 = 110. TC1C = TC1R = 131.

MOV B0MOV	A,#01100000B TC1M,A	; Set the TC1 rate to Fcpu/4
MOV B0MOV B0MOV	A,#131 TC1C,A TC1R,A	; Set the auto-reload reference value
B0BSET B0BSET B0BSET	FTC1OUT FALOAD1 FTC1ENB	; Enable TC1 output to P5.3 and disable P5.3 I/O function ; Enable TC1 auto-reload function ; Enable TC1 timer

Note: Buzzer output is enable, and "PWM1OUT" must be "0".

8.7.7 TC1 TIMER OPERATION SEQUENCE

TC1 timer operation includes timer interrupt, event counter, TC1OUT and PWM. The sequence of setup TC1 timer is as following.

Stop TC1 timer counting, disable TC1 interrupt function and clear TC1 interrupt request flag. æ **B0BCLR FTC1ENB** ; TC1 timer, TC1OUT and PWM stop. ; TC1 interrupt function is disabled. **B0BCLR** FTC1IEN FTC1IRQ ; TC1 interrupt request flag is cleared. **B0BCLR** Set TC1 timer rate. (Besides event counter mode.) :The TC1 rate control bits exist in bit4~bit6 of TC1M. The MOV A, #0xxx0000b ; value is from x000xxxxb~x111xxxxb. **B0MOV** TC1M,A ; TC1 timer is disabled. Set TC1 timer clock source. : Select TC1 internal / external clock source. **B0BCLR** FTC1CKS ; Select TC1 internal clock source. or **BOBSET** FTC1CKS : Select TC1 external clock source. ; Select TC1 Fcpu / Fosc internal clock source . **B0BCLR** FTC1X8 ; Select TC1 Fcpu internal clock source. or **BOBSET** FTC1X8 ; Select TC1 Fosc internal clock source.

* Note: TC1X8 is useless in TC1 external clock source mode.

Set TC1 timer auto-load mode.

or	B0BCLR	FALOAD1	; Enable TC1 auto reload function.
	BOBSET	FALOAD1	; Disable TC1 auto reload function.

Set TC1 interrupt interval time, TC1OUT (Buzzer) frequency or PWM duty cycle.

: Set TC1 interrupt interval time. TC1OUT (Buzzer) frequency or PWM duty.

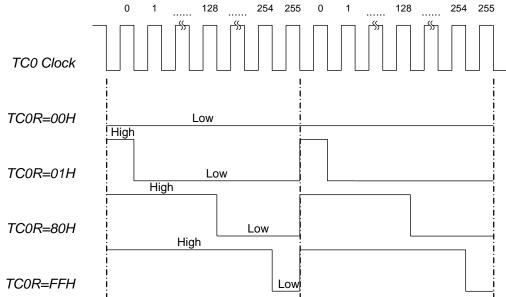
,	MOV B0MOV	A,#7FH TC1C,A	; TC1C and TC1R value is decided by TC1 mode. ; Set TC1C value.
	B0MOV	TC1R,A	; Set TC1R value under auto reload mode or PWM mode.
; In PWM mode	, set PWM cycle.		
	BOBCLR	FALOAD1	; ALOAD1, TC1OUT = 00, PWM cycle boundary is 0~255.
	B0BCLR	FTC10UT	
or	B0BCLR	FALOAD1	; ALOAD1, TC1OUT = 01, PWM cycle boundary is 0~63.
	BOBSET	FTC1OUT	
or			
	BOBSET	FALOAD1	; ALOAD1, TC1OUT = 10, PWM cycle boundary is 0~31.
or	B0BCLR	FTC1OUT	
or	B0BSET	FALOAD1	; ALOAD1, TC1OUT = 11, PWM cycle boundary is 0~15.
	BOBSET	FTC1OUT	,

Set TC1 timer function mode.

0 r	BOBSET	FTC1IEN	; Enable TC1 interrupt function.
or	BOBSET	FTC1OUT	; Enable TC1OUT (Buzzer) function.
or	BOBSET	FPWM1OUT	; Enable PWM function.
¢	Enable TC1 timer.		
	BOBSET	FTC1ENB	; Enable TC1 timer.

8.8 PWM0 MODE

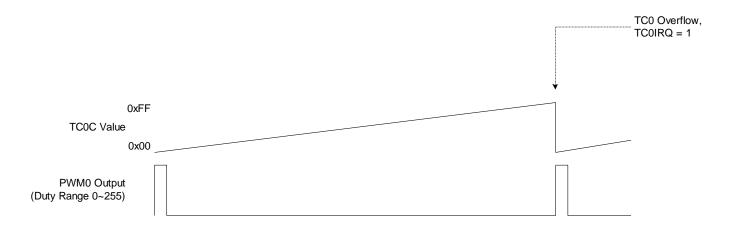
8.8.1 OVERVIEW

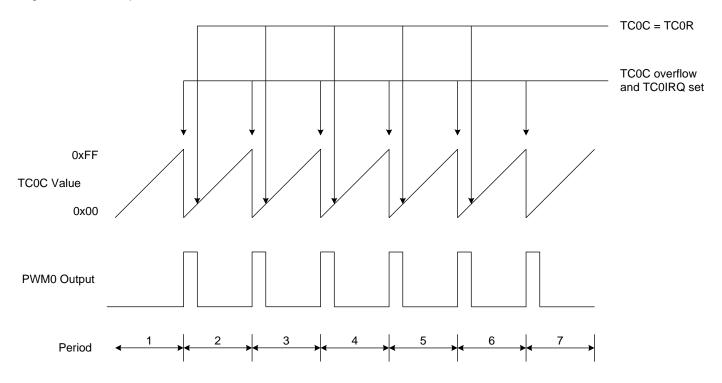

PWM function is generated by TC0 timer counter and output the PWM signal to PWM0OUT pin (P5.4). The value of the 8-bit counter (TC0C) is compared to the contents of the reference register (TC0R). When the reference register value (TC0R) is equal to the counter value (TC0C), the PWM output goes low. When the counter reaches zero, the PWM output is forced high. The low-to-high ratio (duty) of the PWM0 output is TC0R/256.

PWM output can be held at low level by continuously loading the reference register with 00H. Under PWM operating, to change the PWM's duty cycle is to modify the TC0R.

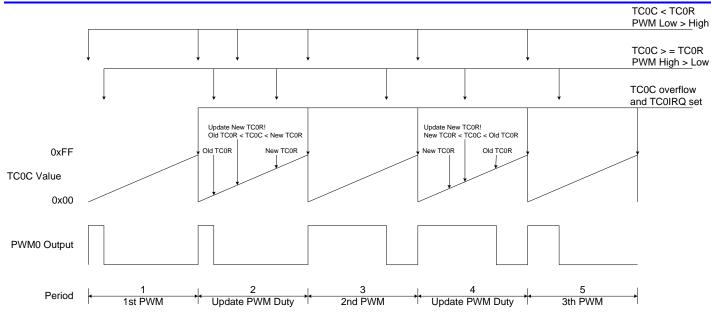
* Note: TC0 is double buffer design. Modifying TC0R to change PWM duty by program, there is no glitch and error duty signal in PWM output waveform. Users can change TC0R any time, and the new reload value is loaded to TC0R buffer at TC0 overflow.

PWM duty range	TC0C valid value	TC0R valid bits value	MAX. PWM Frequency (Fcpu = 4MHz)	Remark
0/256~255/256	0x00~0xFF	0x00~0xFF	7.8125K	Overflow per 256 count


The Output duty of PWM is with different TC0R. Duty range is from 0/256~255/256.


8.8.2 TCxIRQ and PWM Duty

In PWM mode, the frequency of TC0IRQ is depended on PWM duty range. From following diagram, the TC0IRQ frequency is related with PWM duty.


8.8.3 PWM Duty with TCxR Changing

In PWM mode, the system will compare TC0C and TC0R all the time. When TC0C<TC0R, the PWM will output logic "High", when TC0C≧ TC0R, the PWM will output logic "Low". If TC0C is changed in certain period, the PWM duty will change in next PWM period. If TC0R is fixed all the time, the PWM waveform is also the same.

Above diagram is shown the waveform with fixed TC0R. In every TC0C overflow PWM output "High, when TC0C≧ TC0R PWM output "Low". If TC0R is changing in the program processing, the PWM waveform will became as following diagram.

In period 2 and period 4, new Duty (TC0R) is set. TC0 is double buffer design. The PWM still keeps the same duty in period 2 and period 4, and the new duty is changed in next period. By the way, system can avoid the PWM not changing or H/L changing twice in the same cycle and will prevent the unexpected or error operation.

8.8.4 PWM PROGRAM EXAMPLE

Example: Setup PWM0 output from TC0 to PWM0OUT (P5.4). The external high-speed oscillator clock is 4MHz. Fcpu = Fosc/4. The duty of PWM is 30/256. The PWM frequency is about 1KHz. The PWM clock source is from external oscillator clock. TC0 rate is Fcpu/4. The TC0RATE2~TC0RATE1 = 110. TC0C = TC0R = 30.

MOV B0MOV	A,#01100000B TC0M,A	; Set the TC0 rate to Fcpu/4
MOV B0MOV B0MOV	A,#30 TCOC,A TCOR,A	; Set the PWM duty to 30/256
B0BCLR B0BCLR B0BSET B0BSET	FTC0OUT FALOAD0 FPWM0OUT FTC0ENB	; Set duty range as 0/256~255/256. ; Enable PWM0 output to P5.4 and disable P5.4 I/O function ; Enable TC0 timer

Note: The TCOR is write-only register. Don't process them using INCMS, DECMS instructions.

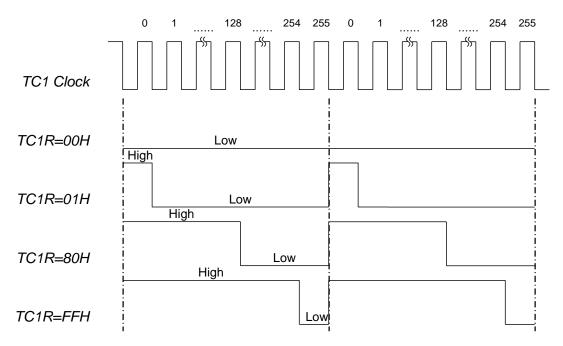
> Example: Modify TC0R registers' value.

MOV B0MOV	A, #30H TC0R, A	; Input a number using B0MOV instruction.
INCMS NOP B0MOV B0MOV	BUF0 A, BUF0 TC0R, A	; Get the new TC0R value from the BUF0 buffer defined by ; programming.

Note: The PWM can work with interrupt request.

8.9 PWM1 MODE

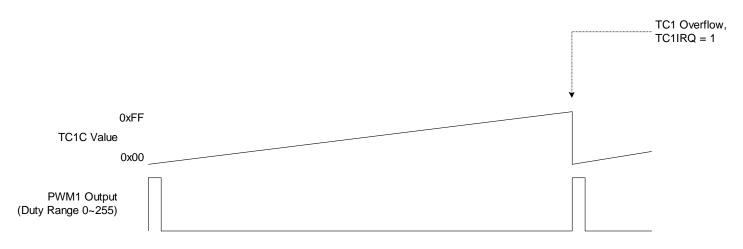
8.9.1 OVERVIEW

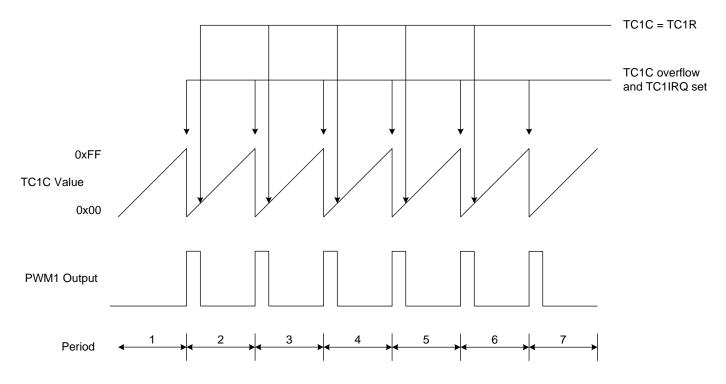

PWM function is generated by TC1 timer counter and output the PWM signal to PWM1OUT pin (P5.3). The 8-bit counter counts modulus 256. The value of the 8-bit counter (TC1C) is compared to the contents of the reference register (TC1R). When the reference register value (TC1R) is equal to the counter value (TC1C), the PWM output goes low. When the counter reaches zero, the PWM output is forced high. The low-to-high ratio (duty) of the PWM1 output is TC1R/256.

PWM output can be held at low level by continuously loading the reference register with 00H. Under PWM operating, to change the PWM's duty cycle is to modify the TC1R.

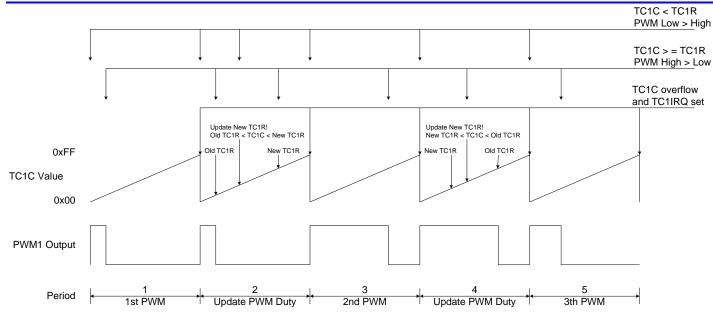
* Note: TC1 is double buffer design. Modifying TC1R to change PWM duty by program, there is no glitch and error duty signal in PWM output waveform. Users can change TC1R any time, and the new reload value is loaded to TC1R buffer at TC1 overflow.

PWM duty range	TC1C valid value	TC1R valid bits value	MAX. PWM Frequency (Fcpu = 4MHz)	Remark
0/256~255/256	0x00~0xFF	0x00~0xFF	7.8125K	Overflow per 256 count


The Output duty of PWM is with different TC1R. Duty range is from 0/256~255/256.


8.9.2 TCxIRQ and PWM Duty

In PWM mode, the frequency of TC1IRQ is depended on PWM duty range. From following diagram, the TC1IRQ frequency is related with PWM duty.


8.9.3 PWM Duty with TCxR Changing

In PWM mode, the system will compare TC1C and TC1R all the time. When TC1C<TC1R, the PWM will output logic "High", when TC1C≧ TC1R, the PWM will output logic "Low". If TC1C is changed in certain period, the PWM duty will change in next PWM period. If TC1R is fixed all the time, the PWM waveform is also the same.

Above diagram is shown the waveform with fixed TC1R. In every TC1C overflow PWM output "High, when TC1C≧ TC1R PWM output "Low". If TC1R is changing in the program processing, the PWM waveform will became as following diagram.

In period 2 and period 4, new Duty (TC1R) is set. TC1 is double buffer design. The PWM still keeps the same duty in period 2 and period 4, and the new duty is changed in next period. By the way, system can avoid the PWM not changing or H/L changing twice in the same cycle and will prevent the unexpected or error operation.

8.9.4 PWM PROGRAM EXAMPLE

Example: Setup PWM1 output from TC1 to PWM1OUT (P5.3). The external high-speed oscillator clock is 4MHz. Fcpu = Fosc/4. The duty of PWM is 30/256. The PWM frequency is about 1KHz. The PWM clock source is from external oscillator clock. TC1 rate is Fcpu/4. The TC1RATE2~TC1RATE1 = 110. TC1C = TC1R = 30.

MOV B0MOV	A,#01100000B TC1M,A	; Set the TC1 rate to Fcpu/4
MOV B0MOV B0MOV	A,#30 TC1C,A TC1R,A	; Set the PWM duty to 30/256
B0BCLR B0BCLR B0BSET B0BSET	FTC1OUT FALOAD1 FPWM1OUT FTC1ENB	; Set duty range as 0/256~255/256. ; Enable PWM1 output to P5.3 and disable P5.3 I/O function ; Enable TC1 timer

Note: The TC1R is write-only register. Don't process them using INCMS, DECMS instructions.

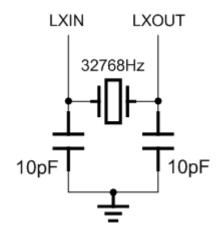
> Example: Modify TC1R registers' value.

MOV B0MOV	A, #30H TC1R, A	; Input a number using B0MOV instruction.
INCMS NOP	BUF0	; Get the new TC1R value from the BUF0 buffer defined by ; programming.
B0MOV B0MOV	A, BUF0 TC1R, A	

Note: The PWM can work with interrupt request.

9.1 OVERVIEW

The MCU builds in 4x36 (4 commons and 36 segments, 144 dots) LCD driver. The LCD supports 1/4 duty and 1/3 bias LCD panel. The LCD frame rate is 64Hz and clock source is external 32768Hz oscillator crystal or RC type

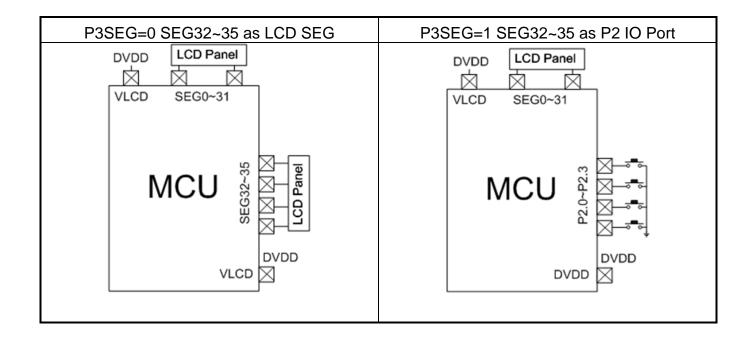

9.2 LCD REGISTERS

089H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LCDM	RES1	RES0	-	-	RCLK	P2SEG		LCDENB
Read/Write	R/W	R/W	-	-	R/W	R/W		R/W
After reset	0	0	-	-	0	0		0

Bit [7:6] **RES[1:0]:** LCD internal resistor control bit.

11 = 10k ohm.

- 10 = 50k ohm.
- 01 = 100k ohm.
- 00 = 200k ohm.
- Bit 3 **RCLK**: External low speed clock type selection bit. 0 = 32768Hz crystal/ceramic type connected to LXIN, LXOUT pins.
 - 1 = RC type.
- > Note1: Circuit diagram when RCLK=0 External Low Clock sets as Crystal mode.


> Note2: Circuit diagram when "RCLK=1" will enable external Low Clock sets as RC mode.

Note: Connect the C as near as possible to the VSS pin of micro-controller. The frequency of external low RC is decided by the capacitor value. Adjust capacitor value to about 32KHz frequency.

- Bit 2 **P2SEG:** Seg32~Seg35 shared with P20~P23 control bit.. 0 = Disable.
 - 1 = Enable.
- Bit 0 LCDENB: LCD control bit.
 - 0 = Disable.
 - 1 = Enable.
- Note: Seg32~Seg35 pins are shared with P20~P23. When these pins are used as Port2 general purpose I/O mode, the P2SEG bit of LCDM register must be set as "1".

Example : Set LCD mode.

; Set LCD 3276	8Hz clock source t	ype.	
	B0BCLR	FRCLK	; Crystal/ceramic type.
or			
	BOBSET	FRCLK	; RC type.
; Set LCD Bias.			
; Enable LCD.			
, 2000 2001	BOBSET	FLCDENB	; Enable LCD driver

9.3 LCD RAM MAP

LCD dots are controlled by LCD RAM in Bank15. Program the LCD RAM data is using index pointer in bank 0 or directly addressing in bank 15. The LCD RAM placement is by LCD segments. One segment address includes four common bits data. COM0~COM4 is in low-nibble of one LCD RAM (bit0~bit3). The high-nibble of one LCD RAM is useless. The LCD RAM map is as following.

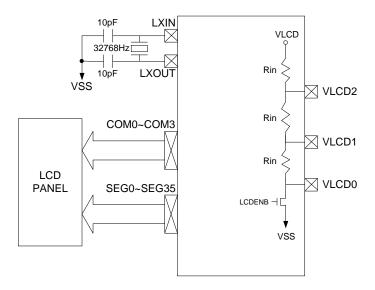
RAM	Bit	0	1	2	3	4	5	6	7
Address	LCD	COM0	COM1	COM2	COM3	-	-	-	-
00h	SEG0	00h.0	00h.1	00h.2	00h.3	-	-	-	-
01h	SEG1	01h.0	01h.1	01h.2	01h.3	-	-	-	-
02h	SEG2	02h.0	02h.1	02h.2	02h.3	-	-	-	-
03h	SEG3	03h.0	03h.1	03h.2	03h.3	-	-	-	-
					-	-	-	-	-
0Ch	SEG12	0Ch.0	0Ch.1	0Ch.2	0Ch.3	-	-	-	-
0Dh	SEG13	0Dh.0	0Dh.1	0Dh.2	0Dh.3	-	-	-	-
0Eh	SEG14	0Eh.0	0Eh.1	0Eh.2	0Eh.3	-	-	-	-
0Fh	SEG15	0Fh.0	0Fh.1	0Fh.2	0Fh.3	-	-	-	-
10h	SEG16	10h.0	10h.1	10h.2	10h.3	-	-	-	-
-					-	-	-	-	-
1Bh	SEG27	1Bh.0	1Bh.1	1Bh.2	1Bh.3	-	-	-	-
1Ch	SEG28	1Ch.0	1Ch.1	1Ch.2	1Ch.3	-	-	-	-
1Dh	SEG29	1Dh.0	1Dh.1	1Dh.2	1Dh.3	-	-	-	-
1Eh	SEG30	1Eh.0	1Eh.1	1Eh.2	1Eh.3	-	-	-	-
1Fh	SEG31	1Fh.0	1Fh.1	1Fh.2	1Fh.3	-	-	-	-
20h	SEG32	20h.0	20h.1	20h.2	20h.3				
21h	SEG33	21h.0	21h.1	21h.2	21h.3				
22h	SEG34	22h.0	22h.1	22h.2	22h.3				
23h	SEG35	23h.0	23h.1	23h.2	23h.3				

RAM bank 15 address vs. Common/Segment location.

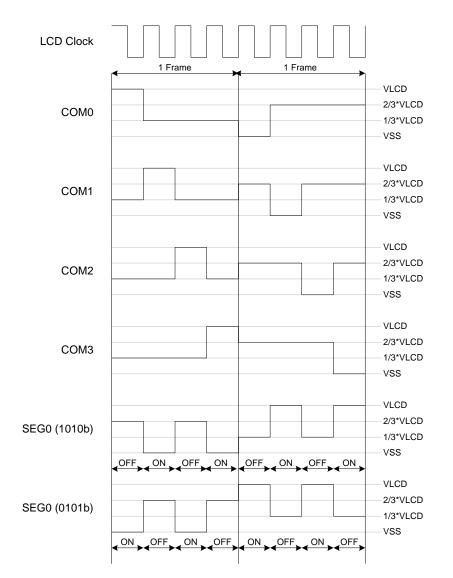
> Example : Set LCD RAM data by index pointer (@YZ) in bank 0.

B0MOV CLR	Y, #0FH Z	; Set @YZ point to LCD RAM address 0x1500.
MOV B0MOV	A, #00001010B @YZ, A	; Set COM0=0, COM1=1, OCM2=0,COM3=1 of SEG 0.
INCMS	Z	; Point to next segment address.

> Example : Set LCD RAM data by directly addressing in bank 15.


MOV BOMOV	A, #15 RBANK, A	; Switch to RAM bank 15.
MOV MOV	A, #00001010B 00H, A	; Set COM0=0, COM1=1, OCM2=0,COM3=1 of SEG 0.
BCLR BSET 	01H.0 01H.1	; Clear COM0=0 of SEG 1. ; Clear COM1=1 of SEG 1.
MOV B0MOV	A, #0 RBANK, A	; Switch to RAM bank 0.

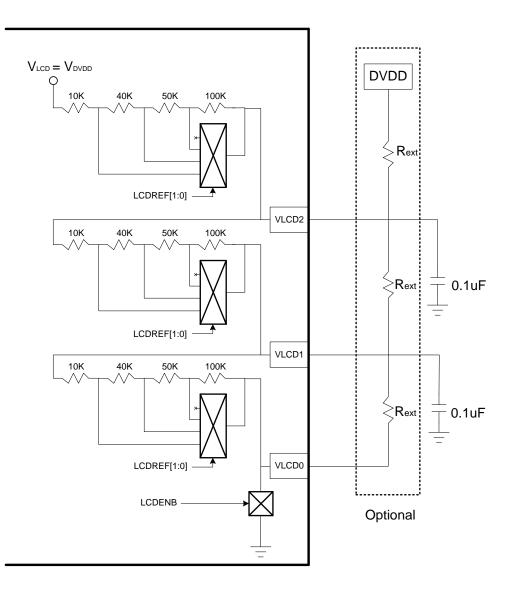
Note: Access RAM data of bank 0 (system registers and user define RAM 0x0000~0x007F) is using "B0xxx" instructions.



9.4 LCD WAVEFORM

1/4 duty , 1/3 bias.

1/4 duty 1/3 bias, LCD Circuit.

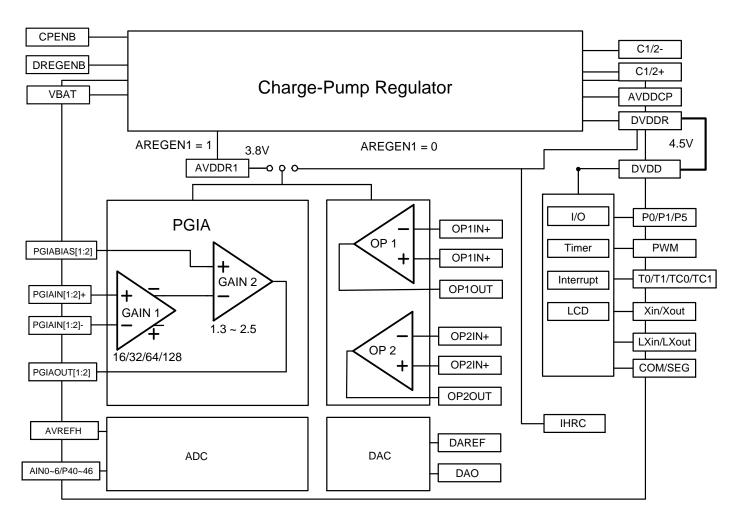

SONiX TECHNOLOGY CO., LTD

9.5 LCD Block

In following diagram, in order to get suitable contrast level of LCD panel, users can add external resistor to bias pin (VLCD2, VLCD1, VLCD0) to adjust bias voltage and LCD drive current. Too much or less current makes the LCD to bring remnant images. In normal condition, the external bias resistor value is 200K, 100K, 50K, and 10K controlled by RES1 and RES0 of the LCDM register. Users can connect a resistor between VLCD0~VLCD2 pin and DVDD to adjust the LCD driving current.

LCD Current consumption = $\frac{\text{DVDD}}{\left(\frac{\text{Rin} \times \text{Rext}}{\text{Rin} + \text{Rext}}\right) \times 3}$

Note: VLCD2 = 2/3*VLCD, VLCD1 = 1/3*VLCD, VLCD0 = GND connected by internal circuit

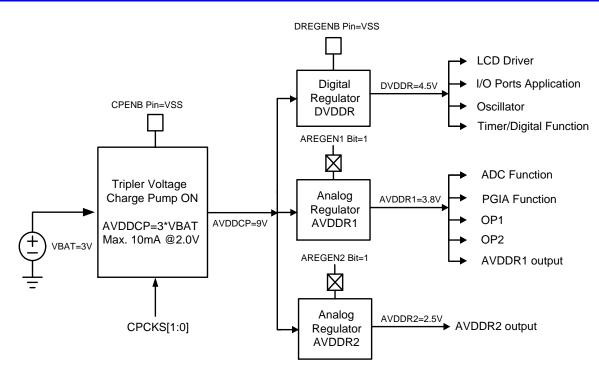


10 Charge-Pump, PGIA and OPA

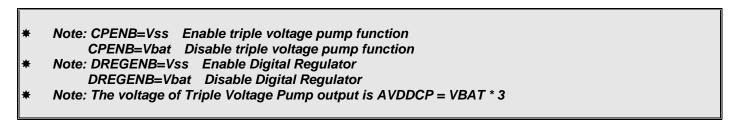
10.1 OVERVIEW

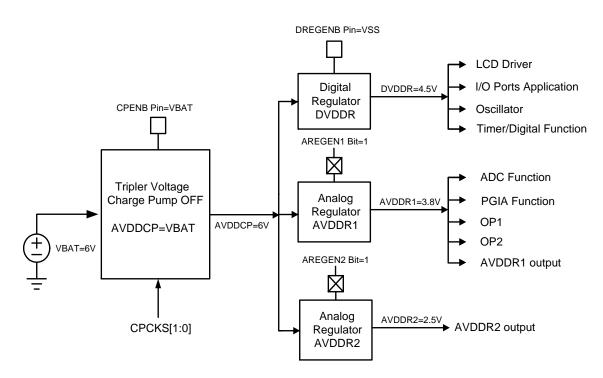
The SN8P2839 has built-in triple Voltage Charge-Pump/Regulator (CPR) to support a stable voltage to digital regulator 4.5V and analog regulator 3.8V/2.5V with total maximum 10mA current driving capacity. This CPR provides stable voltage for internal circuits (PGIA, ADC and OPA) and external sensor (e.g. blood pressure sensor, thermistor, etc). The SN8P1819A also integrated 12-bit Analog-to-Digital Converters (ADC) up to 2048-step resolution. A very low noise chopper-stabilized programmable gain instrumentation amplifier (PGIA) with selectable gains stage one of 16x, 32x, 64x, 128x and gains stage two of $1.3x \sim 2.5x$.

10.2 BLOCK DIAGRAM



Following figure illustrates a block diagram of the Charge-Pump Regulator, PGIA and OPA module. Charge pump function is controlled by CPENB pin and Digital Regulator is controlled by EREGENB pin. The Analog Regulator is controlled by register AREGENB.


Digital Regulator supplied power for oscillator, Logic circuit, LCD and I/O application. Analog Regulator supplied power for ADC, PGIA and OP applications.


To obtain maximum range of ADC output, the ADC maximum input signal voltage should be close to but can't over AVREFH and the minimum input signal voltage should be close to but can't be under the Vss, Choosing a suitable reference voltage and a suitable gain of PGIA can reach this purpose.

VBAT=3V Block Diagram of Charge-Pump Regulator, PGIA and OPA module

VBAT=3V Block Diagram of Charge-Pump Regulator, PGIA and OPA module

10.3 VOLTAGE CHARGE-PUMP REGULATOR (CPR)

SN8P1819A is built in a Charge Pump (CP), which can provide a stable 4.5V (pin DVDDR) for Digital Regulator and 3.8V (PIN AVDDR1)and 2.5V(PIN AVDDR2)with total maximum 10mA current driving capacity. Register CPM can control Analog Regulator working mode, if user turns on the analog regulator (AREGEN1 = 1), then power of PGIA, OPA and ADC is come from AVDDR=3.8V, be careful to turn on analog regulator first before enabling PGIA, OPA and ADC.

10.3.1 CPM-Regulator Mode Register

08AH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
СРМ			-	-	-	-	AREGEN2	AREGEN1
Read/Write							R/W	R/W
After reset							0	0

Bit 0 **AREGEN1:** Analog Regulator (AVDDR1 3.8V) ON/OFF control bit.

1 = Enable Analog Regulator.

0 = Disable. Analog Regulator.

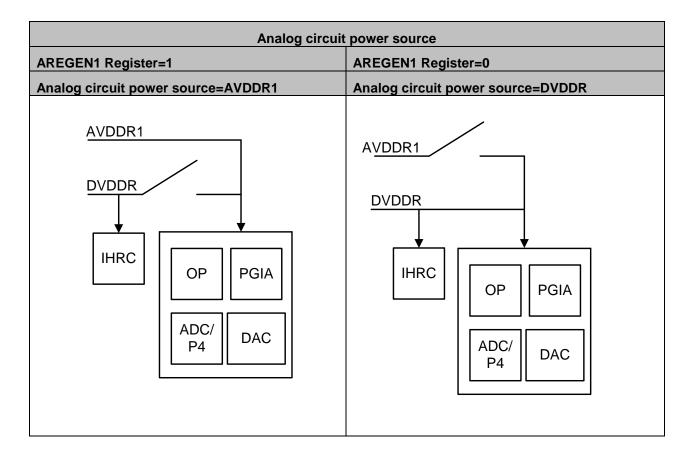
Bit 1 **AREGEN2:** Analog Regulator (AVDDR2 2.5V) ON/OFF control bit.

1 = Enable Analog Regulator.

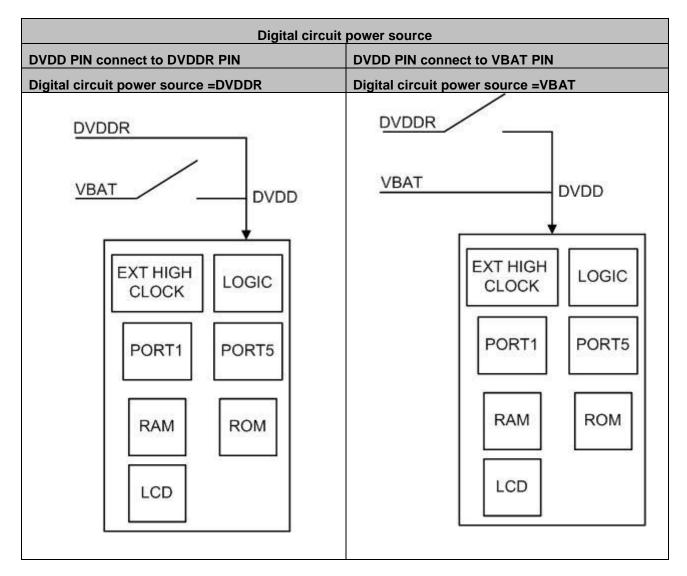
0 = Disable. Analog Regulator.

Pin CPENB, DREGENB, and bit AREGEN1, AREGEN2 controlled Charge-Pump, Regulator working mode. By change these setting, Charge-Pump, Regulator can be set as different voltage.

Note: Don't enable triple Charge Pump when VBAT>3.5V.


	CHARGE PUMP REGULATOR SELECTION TABLE										
VBAT	CPENB	DREGENB	AREGEN1	AREGEN2	RESULT						
PIN	PIN	PIN	Register	Register							
			0	0	AVDDCP=9V \ DVDDR=4.5V \ AVDDR1=0V \ AVDDR2=0V						
				1	AVDDCP=9V \ DVDDR=4.5V \ AVDDR1=0V \ AVDDR2=2.5V						
3V	VSS	VSS	1	0	AVDDCP=9V \ DVDDR=4.5V \ AVDDR1=3.8V \ AVDDR2=0V						
				1	AVDDCP=9V \ DVDDR=4.5V \ AVDDR1=3.8V \ AVDDR2=2.5V						
			0	0	AVDDCP=6V \ DVDDR=4.5V \ AVDDR1=0V \ AVDDR2=0V						
				1	AVDDCP=6V \ DVDDR=4.5V \ AVDDR1=0V \ AVDDR2=2.5V						
6V	VBAT	VSS	1	0	AVDDCP=6V 、 DVDDR=4.5V 、 AVDDR1=3.8V 、 AVDDR2=0V						
				1	AVDDCP=6V \ DVDDR=4.5V \ AVDDR1=3.8V \ AVDDR2=2.5V						

* Note: CPENB/DREGENB connect 100 ohm resistor to VSS or VBAT.



DV	DDR output voltage		
DREGENB PIN	DVDDR voltage		
connect to VSS	4.5V		
connect to VBAT	VBAT		
AVE	DCP output voltage		
CPENB PIN	AVDDCP voltage		
connect to VSS	3*VBAT		
connect to VBAT	VBAT		
AVE	DDR1 output voltage		
AREGEN1 bit	AVDDR1 voltage		
1	3.8V		
0	0		
AVE	DDR2 output voltage		
AREGEN2 bit	AVDDR2 voltage		
1	2.5V		
0	0		

10.3.2 Power source Block Diagrem

10.3.3 CPCKS-Charge Pump Clock Register

08BH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPCKS	-	-	-	-	-	-	CPCKS1	CPCKS0
Read/Write	-	-	-	-	-	-	R/W	R/W
After reset	-	-	-	-	-	-	0	0

Bit [1:0] **CPCKS[1:0]:** sets the Charge-Pump working clock .

CPCKS [1:0]	CP Working Clock
00	Fastest clock
01	Faster clock
10	Slower clock
11	Slowest clock

* Note: Set CPCKS=[11] before enter Power down, slow and Green mode to save power..

Example: Charge-Pump setting (Fosc = 4M X'tal)

<pre>@CPREG_Init:</pre>			
	MOV	A, #01h	
	B0MOV MOV	CPM, A A, #000	; Enable Analog Regualtor.
	B0MOV	CPCKS, A	; Set CPCKS = 00
@Delay_10ms:			
2-	CALL	@Wait_10ms	; Delay 10ms for Regulator Stabilize

10.4 PROGRAMMABLE GAIN INSTRUMENTATION AMPLIFIER (PGIA)

SN8P2839 includes a low noise chopper-stabilized programmable gain instrumentation amplifier (PGIA) with selectable gains stage one of16x, 32x, 64x, 128x and gains stage two of 1.3x ~ 2.5x by register PGIAM.

PGIA gain calculation:

 $PGIAOUT = \frac{1}{2} \times \Delta V \times Gain1 \times Gain2 + Gain2 \times (PGIABIAS - Vdc) + PGIABIAS$ $\Delta V = (AI^{+}) - (AI^{-})$ $Vdc = \frac{1}{2} \times [(AI^{+}) + (AI^{-})]$

PGIA input range : 0.4V ~ 2.8V

PGIA output range : under 2.8V

10.4.1 PGIAM- PGIA Mode Register

0BCH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PGIA1M	P2GS3	P2GS2	P2GS1	P2GS0	-	P1GS1	P1GS0	PGIA1ENB
Read/Write	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W
After reset	0	0	0	0	-	0	0	0

Bit0 **PGIA1ENB:** PGIA1 function enable control bit.

0 = Disable PGIA1 function

1 = Enable PGIA1 function

Bit[2:1] **P1GS [1:0]:** PGIA1 Gain1 selection control bit

Bit[7:1] **P2GS [3:0]:** PGIA1 Gain2 selection control bit

			P1GS [1:0]							
		00	01	10	11					
P2GS [3:0]	Gain	16	32	64	128					
0000	1.32558	21.2093	42.4186	84.8372	169.674					
0001	1.38095	22.0952	44.1905	88.381	176.762					
0010	1.43902	23.0244	46.0488	92.0976	184.195					
0011	1.5	24	48	96	192					
0100	1.5641	25.0256	50.0513	100.103	200.205					
0101	1.63158	26.1053	52.2105	104.421	208.842					
0110	1.7027	27.2432	54.4865	108.973	217.946					

8-Bit MCU build-in 12-bit ADC + PGIA + Charge-pump Regulator + 144 dots LCD driver

0111	1.77778	28.4444	56.8889	113.778	227.556
1000	1.85714	29.7143	59.4286	118.857	237.714
1001	1.94118	31.0588	62.1176	124.235	248.471
1010	2.0303	32.4848	64.9697	129.939	259.879
1011	2.125	34	68	136	272
1100	2.22581	35.6129	71.2258	142.452	284.903
1101	2.33333	37.3333	74.6667	149.333	298.667
1110	2.44828	39.1724	78.3448	156.69	313.379
1111	2.57143	41.1429	82.2857	164.571	329.143

0BAH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PGIA2M	P4GS3	P4GS2	P4GS1	P4GS0	-	P3GS1	P3GS0	PGIA2ENB
Read/Write	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W
After reset	0	0	0	0	-	0	0	0

Bit0 **PGIA2ENB:** PGIA2 function enable control bit.

0 = Disable PGIA2 function

1 = Enable PGIA2 function

- Bit[2:1] **P3GS [1:0]:** PGIA2 Gain1 selection control bit
- Bit[7:1] P4GS [3:0]: PGIA2 Gain2 selection control bit

			P3GS	[1:0]	
		00	01	10	11
P4GS [3:0]	Gain	16	32	64	128
0000	1.32558	21.2093	42.4186	84.8372	169.674
0001	1.38095	22.0952	44.1905	88.381	176.762
0010	1.43902	23.0244	46.0488	92.0976	184.195
0011	1.5	24	48	96	192
0100	1.5641	25.0256	50.0513	100.103	200.205
0101	1.63158	26.1053	52.2105	104.421	208.842
0110	1.7027	27.2432	54.4865	108.973	217.946
0111	1.77778	28.4444	56.8889	113.778	227.556
1000	1.85714	29.7143	59.4286	118.857	237.714
1001	1.94118	31.0588	62.1176	124.235	248.471
1010	2.0303	32.4848	64.9697	129.939	259.879
1011	2.125	34	68	136	272
1100	2.22581	35.6129	71.2258	142.452	284.903
1101	2.33333	37.3333	74.6667	149.333	298.667
1110	2.44828	39.1724	78.3448	156.69	313.379
1111	2.57143	41.1429	82.2857	164.571	329.143

10.4.2 PGIACKS- PGIA CLOCK SELECTION

0BBH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PGIA1CKS	PGIA1CKS7	PGIA1CKS6	PGIA1CKS5	PGIA1CKS4	PGIA1CKS3	PGIA1CKS2	PGIA1CKS1	PGIA1CKS0
Read/Write	R/W							
After reset	0	0	0	0	-	0	0	0

PGIA1CKS [7:0] Sets the PGIA1 working clock, the suggestion PGIA1 clock is 12.5K Hz.

Refer to the following table for PGIA1CKS [7:0] register value setting in different Fosc frequency.

PGIA1 Clock= (Fhosc / (256-PGIA1CKS [7:0])) / 8

PGIA1CKS [7:0]	Fhosc	PGIA1 Working Clock
216	4M	(4M / 40) / 8 = 12.5K
176	8M	(8M / 80) / 8 = 12.5K
156	10M	(10M / 100) / 8 = 12.5K
136	12M	(12M / 120) / 8 = 12.5K
96	16M	(16M/160)/8=12.5K
56	20M	(20M / 200) / 8 = 12.5K

> Note: In general application, PGIA working clock is 12.5K Hz..

0B9H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PGIA2CKS	PGIA2CKS7	PGIA2CKS6	PGIA2CKS5	PGIA2CKS4	PGIA2CKS3	PGIA2CKS2	PGIA2CKS1	PGIA2CKS0
Read/Write	R/W							
After reset	0	0	0	0	-	0	0	0

PGIA2CKS [7:0] Sets the PGIA2 working clock, the suggestion PGIA2 clock is 12.5K Hz.

Refer to the following table for PGIA2CKS [7:0] register value setting in different Fosc frequency.

PGIA2 Clock= (Fhosc / (256-PGIA2CKS [7:0])) / 8

PGIA2CKS [7:0]	Fhosc	PGIA2 Working Clock
216	4M	(4M / 40) / 8 = 12.5K
176	8M	(8M / 80) / 8 = 12.5K
156	10M	(10M / 100) / 8 = 12.5K
136	12M	(12M / 120) / 8 = 12.5K
96	16M	(16M/160)/8=12.5K
56	20M	(20M / 200) / 8 = 12.5K

> Note: In general application, PGIA working clock is 12.5K Hz..

Example: PGIA1 setting (Fosc = 4M X'tal)

@CPREG_Init:	MOV B0MOV MOV	A, #01h CPM, A A, #000	; Enable Analog Regualtor.
	B0MOV	CPCKS, A	; Set CPCKS = 00
@Delay_10ms:	CALL	@Wait_10ms	; Delay 10ms for Charge-Pump Stabilize
@PGIA_Init:	MOV PGIAM MOV	A, #030h AMPM, A A, #0216	; Selected PGIA Gain1=16, Gain2=1.5, total Gain=24

Sosix	Y	8-Bit MCU build-in	SN8P2839 1 12-bit ADC + PGIA + Charge-pump Regulator + 144 dots LCD driver
BON	MOV P	GIA1CKS, A	;Set PGIACKS = 216 for PGIA working clock = 12.5K @ 4M X'tal
@PGIA_Enable :			

; Enable PGIA function

> Note 1: Enable Charge-Pump/Regulator before PGIA working

FPGIAENB

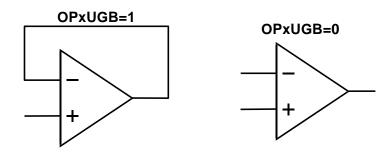
> Note 2: Please set PGIA relative registers first, then enable PGIA function bit.

10.5 OPA – OPERATIONAL AMPLIFIER

SN8P2839 provide two built-in operational amplifiers (OPA) for low pass filer or constant current source circuit.

10.5.1 OPM- OPA Mode Register

BOBSET

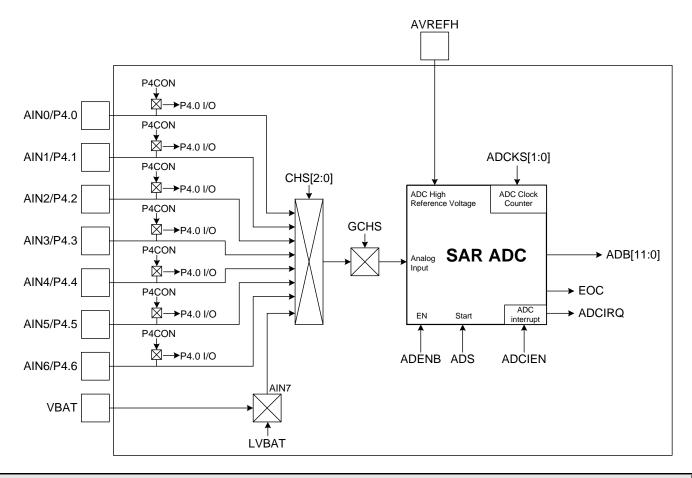

0BDH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPM	-	-	-	-	OP2UGB	OP1UGB	OP2ENB	OP1IENB
Read/Write	-	-	-	-	R/W	R/W	R/W	R/W
After reset	-	-	-	-	0	0	0	0

OP1ENB: Operation amplifier one (OP1) function enable control bit.

- 0 = Disable OP1 function
- 1 = Enable OP1 function
- **OP2ENB:** Operation amplifier two (OP2) function enable control bit.
 - 0 = Disable OP2 function
 - 1 = Enable OP2 function

OP1UGB: OP1 Unit Gain Buffer function enable control bit.

- 0 = Disable OP1 Unit Gain Buffer function.
- 1 = Enable OP1 Unit Gain Buffer function. OP1OUT short to OP1IN-
- **OP2UGB:** OP2 Unit Gain Buffer function enable control bit.
 - 0 = Disable OP2 Unit Gain Buffer function.
 - 1 = Enable OP2 Unit Gain Buffer function. OP2OUT short to OP2IN-



11 7+1 CHANNEL ANALOG TO DIGITAL CONVERTER

11.1 OVERVIEW

This analog to digital converter has 7-input sources with up to 4096-step resolution to transfer analog signal into 12-bits digital data. The ADC build in 1/2VBAT or 1/4VBAT voltage detect. The sequence of ADC operation is to select input source (AIN0 ~ AIN6) at first, then set GCHS and ADS bit to "1" to start conversion. When the conversion is complete, the ADC circuit will set EOC bit to "1" and final value output in ADB register.

- * Note: For 12-bit resolution the conversion time is 16 steps
 - Note: P4 shared with ADC channels.
 - When AREGEN1=1(AVDDR1 Enable), then P4 I/O voltage=AVDDR1=3.8V.
 - When AREGEN1=0(AVDDR1 Disable), then P4 I/O voltage=DVDDR.
 - Note: The analog input level must be between the AVREFH and VSS.
- Note: The AVREFH level must be between the AVDDR1(3.8V) and 2.0V.
- * Note: Build in 1/2 VBAT, 1/4 VBAT detect.
- Note: ADC programming notice:
 - Set ADC input pin I/O direction as input mode
 - Disable pull-up resistor of ADC input pin
 - Set related bit of P4CON register to avoid extra power consumption in power down mode.
 - Delay 100uS after enable ADC (set ADENB = "1") to wait ADC circuit ready for conversion.
 - Disable ADC (set ADENB = "0") before enter sleep mode to save power consumption.

11.2 ADM REGISTER

0B1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADM	ADENB	ADS	EOC	GCHS	LVBAT	CHS2	CHS1	CHS0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

- Bit 7 ADENB: ADC control bit.
 - 0 = Disable.
 - 1 = Enable.
- Bit 6 **ADS:** ADC start bit. 0 = Stop. 1 = Starting.
- Bit 5 **EOC:** ADC status bit. 0 = Progressing. 1 = End of converting and reset ADS bit.
- Bit 4 **GCHS:** Global channel select bit. 0 = Disable AIN channel. 1 = Enable AIN channel.

Bit 3 **LVBAT:** AIN7 internal channel select bit, for voltage detect function. 0 = 1/2 VBAT. 1 = 1/4 VBAT.

Bit[2:0] **CHS[2:0]:** ADC input channels select bit. 000 = AIN0, 001 = AIN1, 010 = AIN2, 011 = AIN3 100 = AIN4, 101 = AIN5, 110 = AIN6, 111 = AIN7

Note: If ADENB = 1, users should set P4.n/AINn as input mode without pull-up. System doesn't set automatically. If P4CON.n is set, the P4.n/AINn's digital I/O function including pull-up is isolated.

11.3 ADR REGISTERS

0B3H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADR	-	ADCKS2	ADCKS1	ADCKS0	ADB3	ADB2	ADB1	ADB0
Read/Write	-	R/W	R/W	R/W	R	R	R	R
After reset	-	0	0	0	-	-	-	-

Bit 6,5,4	ADCKS [2:0]: ADC's clock source select bit.
-----------	---

ADCKS2	ADCKS1	ADCKS0	ADC Clock Source
0	0	0	Fcpu/16
1	0	0	Fcpu/8
1	0	1	Fcpu/4
1	1	0	Fcpu/2
1	1	1	Fcpu

Bit [3:0] ADB [3:0]: ADC Low-byte data buffer.

11.4 ADB REGISTERS

0B2H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADB	ADB11	ADB10	ADB9	ADB8	ADB7	ADB6	ADB5	ADB4
Read/Write	R	R	R	R	R	R	R	R
After reset	-	-	-	-	-	-	-	-

Bit[7:0] **ADB[7:0]:** ADC high-byte data buffer.

- * Note: ADB11~ADB0 bits for 12-bit ADC resolution.
- Note: ADB11~ADB4 bits for 8-bit ADC resolution.

ADB is ADC data buffer to store AD converter result. The ADB is only 8-bit register including bit 4~bit11 ADC data. To combine ADB register and the low-nibble of ADR will get full 12-bit ADC data buffer. The ADC buffer is a read-only register.

The AIN's input voltage v.s. ADB's output data

AIN n	ADB11	ADB10	ADB9	ADB8	ADB7	ADB6	ADB5	ADB4	ADB3	ADB2	ADB1	ADB0
0/4096*VREFH	0	0	0	0	0	0	0	0	0	0	0	0
1/4096*VREFH	0	0	0	0	0	0	0	0	0	0	0	1
•			•			-						
4094/4096*VREFH	1	1	1	1	1	1	1	1	1	1	1	0
4095/4096*VREFH	1	1	1	1	1	1	1	1	1	1	1	1

Note: ADC buffer ADB[11:0] initial value after reset is unknown.

11.5 P4CON REGISTERS

The Port 4 is shared with ADC input function. Only one pin of port 4 can be configured as ADC input in the same time by ADM register. The other pins of port 4 are digital I/O pins. Connect an analog signal to COMS digital input pin, especially the analog signal level is about 1/2 VDD will cause extra current leakage. In the power down mode, the above leakage current will be a big problem. Unfortunately, if users connect more than one analog input signal to port 4 will encounter above current leakage situation. P4CON is Port4 Configuration register. Write "1" into P4CON [7:0] will configure related port 4 pin as pure analog input pin to avoid current leakage.

0BEH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P4CON	-	P4CON6	P4CON5	P4CON4	P4CON3	P4CON2	P4CON1	P4CON0
Read/Write	-	W	W	W	W	W	W	W
After reset	-	0	0	0	0	0	0	0

Bit[4:0] **P4CON[6:0]:** P4.n configuration control bits.

0 = P4.n can be an analog input (ADC input) or digital I/O pins.

1 = P4.n is pure analog input, can't be a digital I/O pin.

* Note: When Port 4.n is general I/O port not ADC channel, P4CON.n must set to "0" or the Port 4.n digital I/O signal would be isolated.

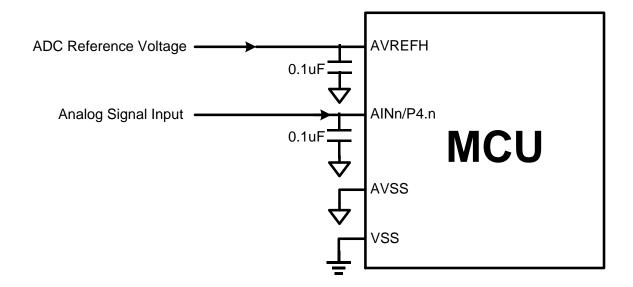
11.6 ADC CONVERTING TIME

12-bit ADC conversion time = 1/(ADC clock /4)*16 sec

Fcpu = 4MHz (High clock, Fosc is 4MHz and Fcpu = Fosc/1)

ADCKS2	ADCKS1	ADCKS0	ADC Clock	ADC conversion time
0	0	0	Fcpu/16	1/(4MHz/16/4)*16 = 256 us
1	0	0	Fcpu/8	1/(4MHz/8/4)*16 = 128 us
1	0	1	Fcpu/4	1/(4MHz/4/4)*16 = 64 us
1	1	0	Fcpu/2	1/(4MHz/2/4)*16 = 32 us
1	1	1	Fcpu	1/(4MHz/4)*16 = 16 us

11.7 ADC ROUTINE EXAMPLE


Example : Configure AIN0 as 12-bit ADC input and start ADC conversion then enter power down mode.

ADC0:

	MOV B0MOV B0BCLR MOV	A, #0FEh P4UR, A FP40M A, #01h	; Disable P4.0 pull-up resistor ; Set P4.0 as input pin
	B0MOV MOV	P4CON, A A, #00H	; Set P4.0 as analog input
	B0MOV MOV	ADR, A A,#10H	; To set ADC clock = Fcpu/16.
	BOMOV BOBSET CALL BOBSET	ADM,A FADENB Delay100uS FADS	; To enable GCHS and set AIN0 input. ; Enable ADC circuit ; Delay 100uS to wait ADC circuit ready for conversion ; To start conversion
WADC0:	B0BTS1	FEOC	; To skip, if end of converting =1
	JMP	WADC0	; else, jump to WADC0
	B0MOV B0MOV	A,ADB Adc_Buf_Hi, A	; To get AIN0 input data bit11 ~ bit4
	BOMOV AND BOMOV	A,ADR A, 0Fh Adc_Buf_Low, A	; To get AIN0 input data bit3 ~ bit0
Power_Down	B0BCLR B0BCLR	FADENB FCPUM1	; Disable ADC circuit
	B0BSET	FCPUM0	; Enter sleep mode

11.8 ADC CIRCUIT

ADC reference high voltage is from external voltage. The capacitor (0.1uF) between AVREFH and AVSS to stable AVERFH voltage.

12 1 CHANNEL DIGITAL TO ANALOG CONVERTER

The DAC structure is 12-bit resolution, it can generate a analog signal on DAO pin. DAO output voltage range= 0V ~ DAREF. Max DAREF input voltage=AVDDR1 (3.8V).

12.1 DAC Register

0F7H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DAM	DAEN							
Read/Write	R/W							
After Reset	0							

Bit 7 **DAEN:** DAC control bit.

0 =Disable DAC function.

1 = Enable DAC function.

-	Lindene Di i e i							
0F8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DABL					DAB3	DAB2	DAB1	DAB0
Read/Write					W	W	W	W
After Reset					0	0	0	0

Bit [3:0] **DAB** [3:0] = The low-nibble byte is DAC normal mode output configuration data buffer.

0F9H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DABH	DAB11	DAB10	DAB9	DAB8	DAB7	DAB6	DAB5	DAB4
Read/Write	R/W	R/W	R/W	R/W	W	W	W	W
After Reset	0	0	0	0	0	0	0	0

Bit [7:0] **DAB [11:4]** = The high-nibble byte is DAC normal mode output configuration data buffer.

Note: DAB[11:0] written sequence is write DAB[3:0] first, and then write DAB[11:4]. End of writing DAB[11:4] signal means the end of DAB written. Note: Max DAREF input voltage=AVDDR1 (3.8V).

The DAB register, from bit0 to bit11, to generate analog signal on DAO pin. The DAO output signal voltage range is 0V

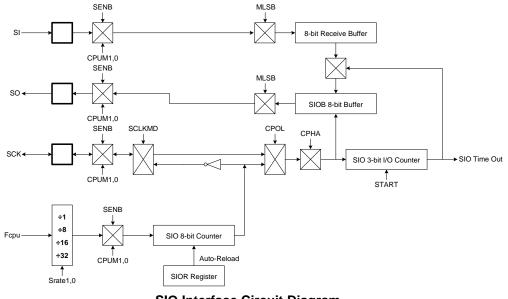
The DAB's data vs DAO's output voltage as following:

~ Vdd.

	DAB[7:0]									DAB[3:0]				
DAB11	DAB10	DAB9	DAB8	DAB7	DAB6	DAB5	DAB4	DAB3	DAB2	DAB1	DAB0	Voltage (V)		
0	0	0	0	0	0	0	0	0	0	0	0	VSS		
0	0	0	0	0	0	0	0	0	0	0	1	1/4095*DAREF		
0	0	0	0	0	0	0	0	0	0	1	0	2/4095*DAREF		
0	0	0	0	0	0	0	0	0	0	1	1	3/40955*DAREF		
				•	•			•	•					
				•	•		•	•	•					
1	1	1	1	1	1	1	1	1	1	1	0	4094/4095*DAREF		
1	1	1	1	1	1	1	1	1	1	1	1	DAREF		

1 3 SERIAL INPUT/OUTPUT TRANSCEIVER (SIO)

13.1 OVERVIEW


The SIO (serial input/output) transceiver is a serial communicate interface for data exchanging from one MCU to one MCU or other hardware peripherals. It is a simple 8-bit interface without a major definition of protocol, packet or control bits. The SIO transceiver includes three pins, clock (SCK), data input (SI) and data output (SO) to send data between master and slaver terminals. The SIO interface builds in 8-mode which are the clock idle status, the clock phases and data fist bit direction. The 8-bit mode supports most of SIO/SPI communicate format.

The SIO features include the following:

- Full-duplex, 3-wire synchronous data transfer.
- Master (SCK is clock output) or Slave (SCK is clock input) operation.
- MSB/LSB first data transfer.
- The start phase of data sampling location selection is 1st-phase or 2nd-phase controlled register.
- SCK, SI, SO are programmable open-drain output pin for multiple salve devices application.
- Two programmable bit rates (Only in master mode).
- End-of-Transfer interrupt.

13.2 SIO OPERATION

The SIOM register can control SIO operating function, such as: transmit/receive, clock rate, data transfer direction, SIO clock idle status and clock control phase and starting this circuit. This SIO circuit will transmit or receive 8-bit data automatically by setting SENB and START bits in SIOM register. The SIO data buffer is double buffer design. When the SIO operating, the SIOB register stores transfer data and one internal buffer stores receive data. When SIO operation is successfully, the internal buffer reloads into SIOB register automatically. The SIO 8-bit counter and SIOR register are designed to generate SIO's clock source with auto-reload function. The 3-bit I/O counter can monitor the operation of SIO and announce an interrupt request after transmitting/ receiving 8-bit data. After transferring 8-bit data, this circuit will be disabled automatically and re-transfer data by programming SIOM register. CPOL bit is designed to control SIO clock idle status. CPHA bit is designed to control the clock edge direction of data receive. CPOL and CPHA bits decide the SIO format. The SIO data transfer direction is controlled by MLSB bit to decide MSB first or LSB first.

SIO Interface Circuit Diagram

The SIO supports 8-mode format controlled by MLSB, CPOL and CPHA bits. The edge direction is "Data Transfer Edge". When setting rising edge, that means to receive and transmit one bit data at SCK rising edge, and data transition is at SCK falling edge. When setting falling edge, that means to receive and transmit one bit data at SCK falling edge, and data transition is at SCK rising edge.

"CPHA" is the clock phase bit controls the phase of the clock on which data is sampled. When CPHA=1, the SCK first edge is for data transition, and receive and transmit data is at SCK 2nd edge. When CPHA=0, the 1st bit is fixed already, and the SCK first edge is to receive and transmit data. The SIO data transfer timing as following figure:

M L S B	C P O L	C P H A	Diagrams	Description
0	0	1	bit7 \ bit6 \ bit5 \ bit4 \ bit3 \ bit2 \ bit1 \ bit0	SCK idle status = Low. The transfer first bit = MSB. SCK data transfer edge = Falling edge.
0	1	1	bit7 / bit6 / bit5 / bit4 / bit3 / bit2 / bit1 / bit0	SCK idle status = High. The transfer first bit = MSB. SCK data transfer edge = Rising edge.
0	0	0	bit7 \ bit6 \ bit5 \ bit4 \ bit3 \ bit2 \ bit1 \ bit0 \ Next data	SCK idle status = Low. The transfer first bit = MSB. SCK data transfer edge = Rising edge.
0	1	0	bit7 \low bit5 \low bit4 \low bit3 \low bit2 \low bit1 \low bit0 \low Next data	SCK idle status = High. The transfer first bit = MSB. SCK data transfer edge = Falling edge.
1	0	1	bit0 / bit1 / bit2 / bit3 / bit4 / bit5 / bit6 / Bit7	SCK idle status = Low. The transfer first bit = LSB. SCK data transfer edge = Falling edge.
1	1	1	bit0 / bit1 / bit2 / bit3 / bit4 / bit5 / bit6 / Bit7	SCK idle status = High. The transfer first bit = LSB. SCK data transfer edge = Rising edge.
1	0	0	bit0 \log bit1 \log bit2 \log bit3 \log bit4 \log bit5 \log bit6 \log Bit7 \log Next data	SCK idle status = Low. The transfer first bit = LSB. SCK data transfer edge = Rising edge.
1	1	0	bit0 X bit1 X bit2 X bit3 X bit4 X bit5 X bit6 X Bit7 X Next data	SCK idle status = High. The transfer first bit = LSB. SCK data transfer edge = Falling edge.

SIO Data Transfer Timing

The SIO supports interrupt function. SIOIEN is SIO interrupt function control bit. SIOIEN=0, disable SIO interrupt function. SIOIEN=1, enable SIO interrupt function. When SIO interrupt function enable, the program counter points to interrupt vector (ORG 8) to do SIO interrupt service routine after SIO operating. SIOIRQ is SIO interrupt request flag, and also to be the SIO operating status indicator when SIOIEN = 0, but cleared by program. When SIO operation finished, the SIOIRQ would be set to "1", and the operation is the inverse status of SIO "START" control bit.

The SIOIRQ and SIO START bit indicating the end status of SIO operation is after one 8-bit data transferring. The duration from SIO transfer end to SIOIRQ/START active is about "1/2*SIO clock", means the SIO end indicator doesn't active immediately.

Note: The first step of SIO operation is to setup the SIO pins' mode. Enable SENB, select CPOL and CPHA bits. These bits control SIO pins' mode.

13.3 SIOM MODE REGISTER

SIOM initial value = 0000 0000

0B4H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SIOM	SENB	START	SRATE1	SRATE0	MLSB	SCKMD	CPOL	CPHA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0

Bit 7 SENB: SIO function control bit.

0 = Disable SIO function. P5.0~P5.2 are GPIO.

1 = Enable SIO function. P5.0~P5.2 are SIO pins. SIO pin structure can be push-pull structure and open-drain structure controlled by P1OC register.

Bit 6 **START:** SIO progress control bit.

0 = End of transfer.

1 = SIO transmitting.

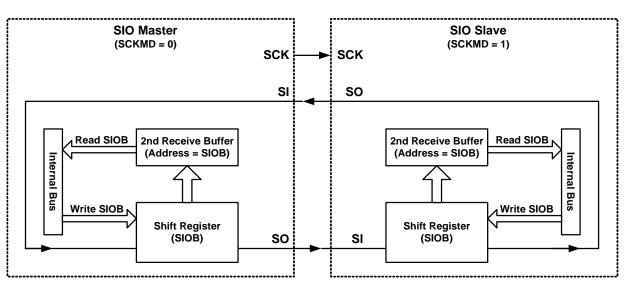
Bit [5:4] SRATE1,0: SIO's transfer rate select bit. These 2-bits are workless when SCKMD=1.

- 00 = fcpu.
- 01 = fcpu/32
- 10 = fcpu/16
- 11 = fcpu/8.
- Bit 3 **MLSB:** MSB/LSB transfer first. 0 = MSB transmit first. 1 = LSB transmit first.
- Bit 2 **SCKMD:** SIO's clock mode select bit. 0 = Internal. (Master mode) 1 = External. (Slave mode)
- Bit 1 **CPOL:** SCK idle status control bit. 0 = SCK idle status is low status. 1 = SCK idle status is high status.
- Bit 0 **CPHA:** The Clock Phase bit controls the phase of the clock on which data is sampled.
 - 0 = Data receive at the first clock phase.
 - 1 = Data receive at the second clock phase.

Because SIO function is shared with Port5 for P5.0 as SCK, P5.1 as SI and P5.2 as SO. The following table shows the Port5[2:0] I/O mode behavior and setting when SIO function enable and disable.

SENB=1 (SI	O Function Enable)	
	(SCKMD=1)	P5.0 will change to Input mode automatically, no matter what P5M
P5.0/SCK	SIO source = External clock	setting.
F3.0/3CK	(SCKMD=0)	P5.0 will change to Output mode automatically, no matter what
	SIO source = Internal clock	P5M setting.
P5.1/SI	P5.1 must be set as Input mode	e in P5M ,or the SIO function will be abnormal
P5.2/SO	SIO = Transmitter/Receiver	P5.2 will change to Output mode automatically, no matter what
F5.2/30		P5M setting.
SENB=0 (SI	O Function Disable)	
P5.0/P5.1/P	5.2 Port5[2:0] I/O mode are fully c	ontrolled by P5M when SIO function Disable

* Note:


- 1. If SCKMD=1 for external clock, the SIO is in SLAVE mode. If SCKMD=0 for internal clock, the SIO is in MASTER mode.
- 2. Don't set SENB and START bits in the same time. That makes the SIO function error.
- 3. SIO pin can be push-pull structure and open-drain structure controlled by P1OC register.

13.4 SIOB DATA BUFFER

SIOB initial value = 0000 0000

0B6H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SIOB	SIOB7	SIOB6	SIOB5	SIOB4	SIOB3	SIOB2	SIOB1	SIOB0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

SIOB is the SIO data buffer register. It stores serial I/O transmit and receive data. The system is single-buffered in the transmit direction and double-buffered in the receive direction. This means that bytes to be transmitted cannot be written to the SIOB Data Register before the entire shift cycle is completed. When receiving data, however, a received byte must be read from the SIOB Data Register before the next byte has been completely shifted in. Otherwise, the first byte is lost. Following figure shows a typical SIO transfer between two micro-controllers. Master MCU sends SCK for initial the data transfer. Both master and slave MCU must work in the same clock edge direction, and then both controllers would send and receive data at the same time.

SIO Data Transfer Diagram

13.5 SIOR REGISTER DESCRIPTION

SIOR initial value = 0000 0000

0B5H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SIOR	SIOR7	SIOR6	SIOR5	SIOR4	SIOR3	SIOR2	SIOR1	SIOR0
Read/Write	W	W	W	W	W	W	W	W
After reset	0	0	0	0	0	0	0	0

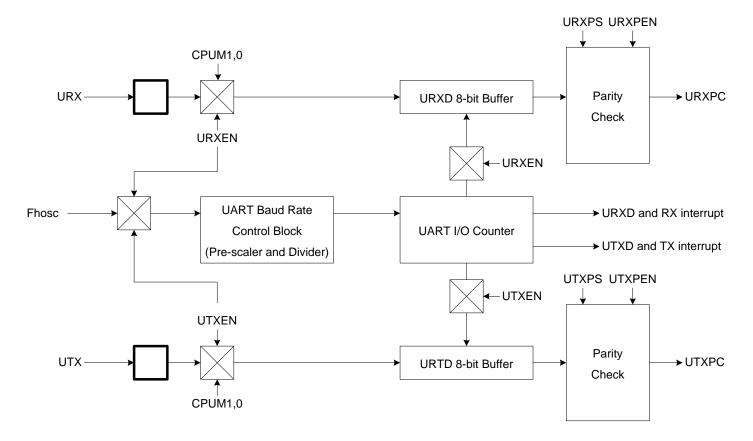
The SIOR is designed for the SIO counter to reload the counted value when end of counting. It is like a post-scaler of SIO clock source and let SIO has more flexible to setting SCK range. Users can set the SIOR value to setup SIO transfer time. To setup SIOR value equation to desire transfer time is as following.

SCK frequency = SIO rate / (256 - SIOR)

SIOR = 256 - (1 / (SCK frequency) * SIO rate)

> Example: Setup the SIO clock to be 5KHz. Fosc = 3.58MHz. SIO's rate = Fcpu = Fosc/4.

SIOR = 256 - (1/(5KHz) * 3.58MHz/4) = 256 - (0.0002*895000) = 256 - 179 = 77


14 Universal Asynchronous Receiver/Transmitter (UART)

14.1 OVERVIEW

The UART interface is an universal asynchronous receiver/transmitter method. The serial interface is applied to low speed data transfer and communicate with low speed peripheral devices. The UART transceiver of Sonix 8-bit MCU allows RS232 standard and supports one byte data length. The transfer format has start bit, 8-bit data, parity bit and stop bit. Programmable baud rate supports different speed peripheral devices. UART I/O pins support push-pull and open-drain structures controlled by register.

The UART features include the following:

- Full-duplex, 2-wire asynchronous data transfer.
- Programmable baud rate.
- 8-bit data length.
- Odd and even parity bit.
- End-of-Transfer interrupt.
- Support break pocket function.
- Support wide range baud rate.

14.2 UART OPERATION

The UART RX and TX pins are shared with GPIO. When UART enables (URXEN=1, UTXEN=1), the UART shared pins transfers to UART purpose and disable GPIO function automatically. When UART disables, the UART pins returns to GPIO last status. The UART data buffer length supports 1-byte.

The UART supports interrupt function. URXIEN/UTXIEN are UART transfer interrupt function control bit. URXIEN=0, disable UART receiver interrupt function. UTXIEN=0, disable UART transmitter interrupt function. URXIEN=1, enable UART receiver interrupt function. UTXIEN=1, enable UART transmitter interrupt function. When UART interrupt function enable, the program counter points to interrupt vector (ORG 0013H/0014H) to do UART interrupt service routine after UART operating. URXIRQ/UTXIRQ is UART interrupt request flag, and also to be the UART operating status indicator when URXIEN=0 or UTXIEN=0, but cleared by program. When UART operation finished, the URXIRQ/UTXIRQ would be set to "1".

The UART also builds in "Busy Bit" to indicate UART bus status. URXBZ bit is UART RX operation indicator. UTXBZ bit is UART TX operation indicator. If bus is transmitting, the busy bit is "1" status. If bus is finishing operation or in idle status, the busy bit is "0" status.

UART TX operation is controlled by loading UTXD data buffer. After UART TX configuration, load transmitted data into UTXD 8-bit buffer, and then UART starts to transmit the pocket following UART TX configuration.

UART RX operation is controlled by receiving the start bit from master terminal. After UART RX configuration, URX pin detects the falling edge of start bit, and then UART starts to receive the pocket from master terminal.

UART provides URXPC bit and UFMER bit to check received pocket. URXPC bit is received parity bit checker. If received parity is error, URXPC sets as "1". If URXPC bit is zero after receiving pocket, the parity is correct. UFMER bit is received stream frame checker. The stream frame error definition includes "Start bit error", "Stop bit error", "Stream length error", "UART baud rate error"... Each of frame error conditions makes UFMER bit sets as "1" after receiving pocket.

14.3 UART BAUD RATE

UART clock is 2-stage structure including a pre-scaler and an 8-bit buffer. UART clock source is generated from system oscillator called Fhosc. Fhosc passes through UART pre-scaler to get UART main clock called Fuart. UART pre-scaler has 8 selections (Fhosc/1, Fhosc/2, Fhosc/4, Fhosc/8, Fhosc/16, Fhosc/32, Fhosc/64, Fhosc/128) and 3-bit control bits (URS[2:0]). UART main clock (Fuart) purposes are the front-end clock and through UART 8-bit buffer (URCR) to obtain UART processing clock and decide UART baud rate.

UART Pre-scaler Selection, URS[2:0]	UART Main Clock Rate	Fuart (Fhosc=16MHz)		
000b	Fhosc/1	16MHz		
001b	Fhosc/2	8MHz		
010b	Fhosc/4	4MHz		
011b	Fhosc/8	2MHz		
100b	Fhosc/16	1MHz		
101b	Fhosc/32	0.5MHz		
110b	Fhosc/64	0.25MHz		
111b	Fhosc/128	0.125MHz		

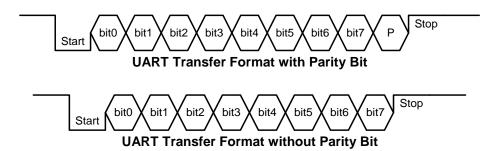
0F2H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
URCR	URCR7	URCR6	URCR5	URCR4	URCR3	URCR2	URCR1	URCR0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

The UART baud rate clock source is Fhosc and divided by pre-scalar. The equation is as following.

UART Baud Rate = 1/2 *(Fuart * 1/(256 - URCR))...bps

Fhosc = 16MH												
Baud Rate	UART Pre-scaler	URS[2:0]	URCR (Hex)	UART Baud Rate	Accuracy (%)							
1200	Fhosc/32	101b	30	1201	0.08%							
2400	Fhosc/32	101b	98	2403	0.12%							
4800	Fhosc/32	101b	CC	4807	0.14%							
9600	Fhosc/32	101b	E6	9615	0.15%							
19200	Fhosc/32	101b	F3	19230	0.15%							
38400	Fhosc/2	000b	98	38461	0.15%							
51200	Fhosc/2	001b	B2	51282	0.16%							
57600	Fhosc/2	001b	BB	57971	0.64%							
102400	Fhosc/2	001b	D9	102564	0.16%							
115200	Fhosc/2	001b	DD	114285	-0.79%							

Note:


1. We strongly recommend not to set URCR = 0xFF, or UART operation would be error.

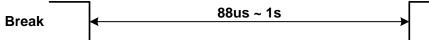
2. Fhosc=16MHZ,UART Pre-scaler not to set Fhosc/1,or UART operation would be error.

14.4 UART transfer format

The UART transfer format includes "Bus idle status", "Start bit", "8-bit Data", "Parity bit" and "Stop bit" as following.

Bus Idle Status: The bus idle status is the bus non-operating status. The UART receiver bus idle status of MCU is floating status and tied high by the transmitter device terminal. The UART transmitter bus idle status of MCU is high status. The UART bus will be set when URXEN and UTXEN are enabled.

Start Bit: UART is a asynchronous type of communication and need a attention bit to offer receiver the transfer starting. The start bit is a simple format which is high to low edge change and the duration is one bit period. The start bit is easily recognized by the receiver.


8-bit Data: The data format is 8-bit length, and LSB transfers first following start bit. The one bit data duration is the unit of UART baud rate controlled by register.

Parity Bit: The parity bit purpose is to detect data error condition. It is an extra bit following the data stream. The parity bit includes odd and even check methods controlled by URXPS/UTXPS bits. After receiving data and parity bit, the parity check executes automatically. The URXPC bit indicates the parity check result. The parity bit function is controlled by URXPEN/UTXPEN bits. If the parity bit function is disabled, the UART transfer contents remove the parity bit and the stop bit follows the data stream directly.

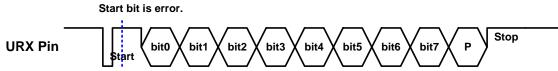
Stop Bit: The stop bit is like start bit using a simple format to indicate the end of UART transfer. The stop bit format is low to high edge change and the duration is one bit period.

14.5 BREAK POCKET

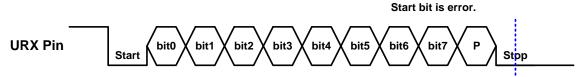
The break pocket is an empty stream to reset UART bus. Break pocket is like a long time zero pocket, and the period is 88us~1s.

TX Break Pocket: UART builds in a UTXBRK bit to transmit Break pocket. When UTXEN = 1 (enable UART TX function), set UTXBRK bit to transmit Break pocket. When Break pocket finishes transmitting, UTXIRQ is set as "1", and UTXBRK is cleared automatically. The period of transmitted break pocket is 25 UART baud rate clocks. If UART baud rate is 250000bps, the break pocket period is 100us.

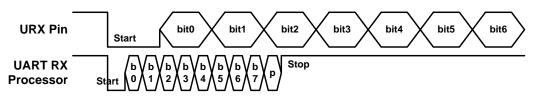
UART TX Break Pocket Period = 25/UART Baud Rate...sec


RX Break Pocket:

UART receives break pocket will get a frame error signal because the data period is longer than typical UART duration. UART can't receive a complete data pocket. After receiving a UART pocket, the break pocket is still output low. UART issues frame error flag (UFMER = 1) and URXIRQ. Maybe the parity bit is error in parity mode. UART changes to initial status until detecting next start bit.



14.6 ABNORMAL POCKET


The abnormal pocket occurs in UART RX mode. Break pocket is one abnormal pocket of the UART architecture. The abnormal pocket includes Stream period error, start bit error, stop bit error...When UART receives abnormal pocket, the UFMER bit will be set "1", and UART issues URXIRQ. The system finds the abnormal pocket through firmware. UART changes to initial status until detecting next start bit.

UART check the start bit is error and issue UFMER flag, but the UART still finishes receiving the pocket.

UART check the stop bit is error and issue UFMER flag, but the UART still finishes receiving the pocket.

If the host's UART baud rate isn't match to receiver terminal, the received pocket is error. But it is not easy to differentiate the pocket is correct or not, because the received error pocket maybe match UART rule, but the data is error. Use checking UFMER bit and URXPC bit status to decide the stream. If the two conditions seem like correct, but the pocket is abnormal, UART will accept the pocket as correct one.

14.7 UART RECEIVER CONTROL REGISTER

0F0H	-	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
URR			URXPEN	URXPS	URXPC	UFMER	URS2	URS1	URS0			
Read/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
After re		0	0	0	0	0	0	0	0			
Bit 7 Bit 6 Bit 5 Bit 4	 Bit 7 URXEN: UART RX control bit. 0 = Disable UART RX. URX pin is GPIO mode or returns to GPIO status. 1 = Enable UART RX. URX pin exchanges from GPIO mode to UART RX mode. Bit 6 URXPEN: UART RX parity bit control bit. 0 = Disable UART RX parity bit function. The data stream doesn't include parity bit. 1 = Enable UART RX parity bit function. The data stream includes parity bit. Bit 5 UTXPS: UART RX parity bit format control bit. 0 = UART RX parity bit format is even parity. 1 = UART RX parity bit format is odd parity. 											
Bit 3 Bit [2:0]	UFMI 0 = C 1 = U URS[000 =	ollect UART ART frame is [2:0] : UART µ = Fhosc/1, 00	X stream fran frame. s error includi per-scalar sel	ng start/stop ect bit. 010 = Fhosc,	bit, stream le	0	⁻ hosc/16, 101	= Fhosc/32,				

14.8 UART TRANSMITTER CONTROL REGISTER

0F2	1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
URTX		UTXEN	UTXPEN	UTXPS	UTXBRK	URXBZ	UTXBZ	-	-			
Read/	Write	R/W	R/W	R/W	R/W	R	R	-	-			
After	reset	0	0	0	0	0	0	-	-			
Bit 7	UTXE	EN: UART TX	control bit									
0 = Disable UART TX. UTX pin is GPIO mode or returns to GPIO status.												
	1 = Enable UART TX. UTX pin exchanges from GPIO mode to UART TX mode and idle high status.											
Bit 6	UTXPEN : UART TX parity bit control bit.											
	0 = D	isable UART	TX parity bit	function. The	e data stream	doesn't inclu	de parity bit.					
	1 = E	nable UART	TX parity bit	unction. The	data stream	includes pari	ty bit.					
Bit 5			parity bit for									
			ty bit format is									
			ty bit format is									
Bit 4			TX BREAK po									
			itting UART E		et.							
			hit UART BRE	•								
Bit 3			<pre>< operating st</pre>									
			le or the end		g.							
			usy and proc									
Bit 2			operating st									
			le or the end		g.							
	1 = U	ART TX is bu	usy and proce	essing.								

Note: URXBZ and UTXBZ bits are UART operating indicators. After setting UART RX/TX operations, set a "NOP" instruction is necessary, and then check UART status through URXBZ and UTXBZ bits.

14.9 UART DATA BUFFER

0F3H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UTXD	UTXD7	UTXD6	UTXD5	UTXD4	UTXD3	UTXD2	UTXD1	UTXD0
Read/Write	R/W							
After Reset	0	0	0	0	0	0	0	0

Bit [7:0] **UTXD:** UART transmitted data buffer.

0F4H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
URXD	URXD7	URXD6	URXD5	URXD4	URXD3	URXD2	URXD1	URXD0
Read/Write	R/W							
After Reset	0	0	0	0	0	0	0	0

Bit [7:0] **URXD:** UART received data buffer.

14.10 UART OPERATION EXAMLPE

 UART TX ; Select parity 	Configuration:		
	BOBCLR	FUTXPEN	; Disable UART TX parity bit function.
;or	BOBSET	FUTXPEN	; Enable UART TX parity bit function.
; Select parity	bit format. B0BCLR	FUTXPS	; UART TX parity bit format is even parity.
;or	BOBSET	FUTXPS	; UART TX parity bit format is odd parity.
; Set UART ba	ud rate.		
	MOV B0MOV	A, # value1 URRX, A	; Set UART pre-scaler URS[2:0].
	MOV B0MOV	A, #value2 URCR, A	; Set UART baud rate 8-bit buffer.
; Enable UAR			
	B0BSET	FUTXEN	; Enable UART TX function and UART TX pin.
; Enable UAR	TX interrupt fun		
	B0BCLR B0BSET	FUTXIRQ FUTXIEN	; Clear UART TX interrupt flag. ; Enable UART TX interrupt function.
; Load TX data	a buffer and exect	ute TX transmitter.	
	MOV B0MOV	A, # value3 UTXD, A	; Load 8-bit data to UTXD data buffer.
	NOP		;After loading UTXD, UART TX starts to transmit. ; One instruction delay for UTXBZ flag.
; Check TX op	eration.		
	B0BTS0	FUTXBZ	; Check UTXBZ bit.
	JMP JMP	CHKTX ENDTX	; UTXBZ=1, TX is operating. ; UTXBZ=0, the end of TX.
ſ			

Note: UART TX operation is started through loading UTXD data buffer.

æ

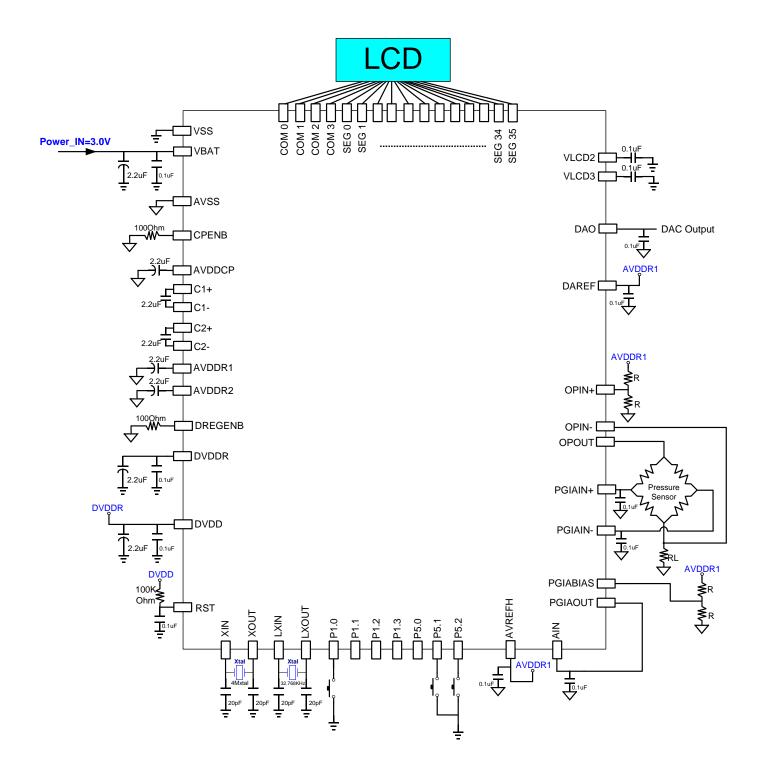
æ

• Transmit Break Pocket: : Select parity bit function

; Select parity			
	B0BCLR	FUTXPEN	; Disable UART TX parity bit function.
;or	BOBSET	FUTXPEN	; Enable UART TX parity bit function.
; Select parity	bit format.		
	B0BCLR	FUTXPS	; UART TX parity bit format is even parity.
;or	BOBSET	FUTXPS	; UART TX parity bit format is odd parity.
; Set UART ba	ud rate.		
	MOV	A, #value1	; Set UART pre-scaler URS[2:0].
	B0MOV MOV B0MOV	URRX, A A, # value2 URCR, A	; Set UART baud rate 8-bit buffer.
; Enable UAR ⁻	T TX pin.		
	BOBSET	FUTXEN	; Enable UART TX function and UART TX pin.
: Enable UAR	T TX interrupt fun	ction.	
,	B0BCLR B0BSET	FUTXIRQ FUTXIEN	; Clear UART TX interrupt flag. ; Enable UART TX interrupt function.
; Start UART k	oreak pocket.		
	B0BSET NOP	FUTXBRK	; Transmit UART break pocket. ; One instruction delay for UTXBZ flag.
; Check TX op	eration.		
-	B0BTS0	FUTXBZ	; Check UTXBZ bit.
	JMP JMP	CHKTX ENDTX	; UTXBZ=1, TX is operating. ; UTXBZ=0, the end of TX.

Note: UART TX break pocket is controlled by UTXBRK bit and needn't load UTXD buffer.

æ


• UART RX Configuration: : Select parity bit function.

; Select parity	bit function. B0BCLR	FURXPEN	; Disable UART RX parity bit function.
;or	B0BSET	FURXPEN	; Enable UART RX parity bit function.
; Select parity			
;or	B0BCLR	FURXPS	; UART RX parity bit format is even parity.
,01	BOBSET	FURXPS	; UART RX parity bit format is odd parity.
; Set UART ba	ud rate.		
,	MOV B0MOV	A, # value1 URRX, A	; Set UART pre-scaler URS[2:0].
	MOV B0MOV	A, # value2 URCR, A	; Set UART baud rate 8-bit buffer.
; Enable UART	RX nin		
, Endole OART	BOBSET	FURXEN	; Enable UART RX function and UART RX pin.
; Enable UART	RX interrupt fund	ction.	
	B0BCLR B0BSET NOP	FURXIRQ FURXIEN	; Clear UART RX interrupt flag. ; Enable UART RX interrupt function. ; One instruction delay for URXBZ flag.
; Check RX op	eration.		
	B0BTS0 JMP JMP	FURXBZ CHKRX ENDRX	; Check URXBZ bit. ; URXBZ=1, RX is operating. ; URXBZ=0, the end of RX.

Note: UART RX operation is started as start bit transmitted from master terminal.

15 APPLICATION CIRCUIT

SN8F2839 8-Bit MCU build-in 12-bit ADC + PGIA + Charge-pump Regulator + 144 dots LCD driver 16 INSTRUCTION TABLE

Field	Mnem	onic	Description	С	DC	Ζ	Cycle
	MOV	A,M	$A \leftarrow M$	-	-		1
М	MOV	M,A	$M \leftarrow A$	-	-	-	1
0	B0MOV	A,M	$A \leftarrow M$ (bnak 0)	-	-		1
V	B0MOV	M,A	M (bank 0) $\leftarrow A$	-	-	-	1
Е	MOV	A,I	A←I	-	-	-	1
-	B0MOV	M,I	$M \leftarrow I$, (M = only for Working registers R, Y, Z, RBANK & PFLAG)	-	-	-	1
•	XCH	A,M	$A \leftarrow \rightarrow M$	-	-	-	1
	B0XCH	A,M	$A \leftarrow \rightarrow M$ (bank 0)	-	-	-	1
	MOVC	7 4,111	$R, A \leftarrow ROM[Y,Z]$	-	-	-	2
-	ADC	A,M	$A \leftarrow A + M + C$, if occur carry, then C=1, else C=0		2		1
А	ADC	M,A	$A \leftarrow A + M + C$, if occur carry, then C=1, else C=0 M $\leftarrow A + M + C$, if occur carry, then C=1, else C=0	V	√ √	V	1
	ADC	,		√	N	√	1
R		A,M	$A \leftarrow A + M$, if occur carry, then C=1, else C=0		 √		
	ADD	M,A	$M \leftarrow A + M$, if occur carry, then C=1, else C=0	1		V	1
Т	B0ADD	M,A	M (bank 0) \leftarrow M (bank 0) + A, if occur carry, then C=1, else C=0	1	V	N	1
Н	ADD	A,I	$A \leftarrow A + I$, if occur carry, then C=1, else C=0	1	V	V	1
М	SBC	A,M	$A \leftarrow A - M - /C$, if occur borrow, then C=0, else C=1	√	V	V	1
E	SBC	M,A	$M \leftarrow A - M - /C$, if occur borrow, then C=0, else C=1				1
Т	SUB	A,M	$A \leftarrow A - M$, if occur borrow, then C=0, else C=1				1
I	SUB	M,A	$M \leftarrow A - M$, if occur borrow, then C=0, else C=1				1
С	SUB	A,I	$A \leftarrow A - I$, if occur borrow, then C=0, else C=1				1
	DAA		To adjust ACC's data format from HEX to DEC.		-	-	1
	MUL	A,M	R, A \leftarrow A * M, The LB of product stored in Acc and HB stored in R register. ZF affected by Acc.	-	-		2
	AND	A,M	$A \leftarrow A$ and M	-	-		1
L	AND	M,A	$M \leftarrow A$ and M	-	-		1
0	AND	A,I	$A \leftarrow A$ and I	-	-	V	1
G	OR	A,M	$A \leftarrow A \text{ or } M$	-	-	V	1
	OR	M,A	$M \leftarrow A \text{ or } M$	-	-	V	1
c	OR	A,I	$A \leftarrow A \text{ or } I$	-	-	Ń	1
-	XOR	A,M	$A \leftarrow A \text{ xor } M$	-	-	Ń	1
	XOR	M.A	$M \leftarrow A \text{ xor } M$	-	-	Ń	1
-	XOR	A,I	$A \leftarrow A \text{ xor } I$	_	-	ب ا	1
-	SWAP	M	A (b3~b0, b7~b4) ←M(b7~b4, b3~b0)		-		1
Р	SWAP	M	$M(b3~b0, b7~b4) \leftarrow M(b7~b4, b3~b0)$ $M(b3~b0, b7~b4) \leftarrow M(b7~b4, b3~b0)$	-	-	-	1
R	RRC	M	$A \leftarrow RRC M$	√	_	_	1
0	RRCM	M	$M \leftarrow RRC M$	1	-	-	1
-	RLC			$\frac{1}{\sqrt{2}}$	-	-	
C	-	M	$A \leftarrow \text{RLC M}$		-		1
E	RLCM	M	$M \leftarrow RLC M$		-	-	1
S	CLR	M	$M \leftarrow O$	-	-	-	1
S	BCLR	M.b	$M.b \leftarrow 0$	-	-	-	1
	BSET	M.b	M.b ← 1	-	-	-	1
	BOBCLR	M.b	$M(bank 0).b \leftarrow 0$	-	-	-	1
	BOBSET	M.b	M(bank 0).b ← 1	-	-	-	1
	CMPRS	A,I	$ZF,C \leftarrow A - I$, If A = I, then skip next instruction		-		1 + S
В	CMPRS	A,M	$ZF,C \leftarrow A - M$, If A = M, then skip next instruction		-		1 + S
R	INCS	М	$A \leftarrow M + 1$, If $A = 0$, then skip next instruction	-	-	-	1 + S
Α	INCMS	М	$M \leftarrow M + 1$, If M = 0, then skip next instruction	-	-	-	1 + S
Ν	INC	М	A ← M + 1.	-	-		1
С	INCM	М	$M \leftarrow M + 1$.	-	-		1+N
н	DECS	М	$A \leftarrow M - 1$, If $A = 0$, then skip next instruction	-	-	-	1 + S
С	DECMS	М	$M \leftarrow M - 1$, If M = 0, then skip next instruction	-	-	-	1 + S
	DEC	M	$A \leftarrow M - 1$.	-	-		1
	DECM	M	$M \leftarrow M - 1$.	-	-	V	1+N
	BTS0	M.b	If M.b = 0, then skip next instruction	-	-	-	1 + S
	BTS1	M.b	If $M.b = 1$, then skip next instruction	-	-	-	1 + S
	BOBTSO	M.b	If $M(bank 0).b = 0$, then skip next instruction	-	-	-	1+S
	B0BTS1	M.b	If M(bank 0).b = 1, then skip next instruction	-	-	-	1 + S
	JMP	d	PC15/14 \leftarrow RomPages1/0, PC13~PC0 \leftarrow d	-	-	-	2
		d	Stack \leftarrow PC15~PC0, PC15/14 \leftarrow RomPages1/0, PC13~PC0 \leftarrow d	-	-	-	2
	CALL	u	$ $ Slack \leftarrow FC 15~FC0, FC 15/14 \leftarrow R011Fages 1/0, FC 15~FC0 \leftarrow 0				

SN8P2839 8-Bit MCU build-in 12-bit ADC + PGIA + Charge-pump Regulator + 144 dots LCD driver

	CALLYZ	Stack \leftarrow PC15~PC0, PC15~PC8 \leftarrow Y register, PC7~PC0 \leftarrow Z register	-	-	-	2
Μ	RET	$PC \leftarrow Stack$	-	-	-	2
1	RETI	$PC \leftarrow Stack$, and to enable global interrupt	-	-	-	2
S C	NOP	No operation	-	-	-	1

Note: 1. Processing OSCM register needs to add extra one cycle. 2. If branch condition is true then "S = 1", otherwise "S = 0".

17_{ELECTRICAL CHARACTERISTIC}

17.1 ABSOLUTE MAXIMUM RATING

	(All of the voltages referenced to Vss)
Supply voltage (Vdd)	2.0V ~ 6.0V
Input in voltage (Vin)	Vss - 0.2V ~ Vdd + 0.2V
Operating ambient temperature (Topr)	
Storage ambient temperature (Tstor)	–40°C ~ + 125°C
Power consumption (Pc)	500 mW

17.2 STANDARD ELECTRICAL CHARACTERISTIC

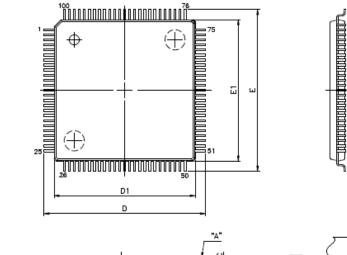
		Vdd = 5.0V, fosc = 4 MHz, ambient temperature	•			
PARAMETER	SYM.	DESCRIPTION	MIN.	TYP.	MAX.	UNIT
	DVDD	Normal mode, Vpp = DVDD	2.4	5.0	5.5	
Operating voltage		Programming mode, Vpp = 12.5V	4.5	5.0	5.5	V
	VBAT	Battery(charge pump) input voltage	2.0	5.0	6.5	
RAM Data Retention voltage			1.4	-	-	V
Internal POR	Vpor	Vdd rise rate to ensure internal power-on reset	-	0.05	-	V/ms
Input Low Voltage	ViL	Input with Schmitt trigger	Vss	-	0.2Vdd	V
Input High Voltage	ViH	Input with Schmitt trigger	0.8Vdd	-	Vdd	V
Reset pin leakage current	llekg	Vin = Vdd	-	-	5	uA
I/O port pull-up resistor	Rup	Vin = Vss , Vdd = 5V	50	100	150	KΩ
I/O port input leakage current	llekg	Pull-up resistor disable, Vin = Vdd	-	-	2	uA
Port1, Port2, Port4, Port 5 output source current	loH	Vop = Vdd - 0.5V	10	-	-	mA
sink current	loL	Vop = Vss + 0.5V	-	-	-9	mA
INTn trigger pulse width	Tint0	INT0 ~ INT2 interrupt request pulse width	2/fcpu	-	-	Cycle
		ADC				
AVREFH input voltage	Varfh	Vdd = 5.0V	2V	-	Vdd	V
AIN0 ~ AIN3 input voltage	Vani	Vdd = 5.0V	0	-	AVREFH	V
ADC clock Frequency	Fadclk	Vdd = 5.0V	32K	-	8M	Hz
		Vdd = 3.0V	32K	-	8M	Hz
ADC conversion cycle time	Fadcyl	Vdd = 2.4V~5.5V	64	-	-	1/Fadcl k
ADC sampling Rate	F adaman	Vdd = 5.0V	-	-	125	K/sec
(set FADS=1 frequency)	Fadsmp	Vdd = 3.0V	-	-	80	K/sec
Differential Nonlinearity	DNL	VDD=5.0V, AVREFH=3.2V, F _{ADSMP} =7.8K	±1	±2	±16	LSB
Integral Nonlinearity	INL	VDD=5.0V, AVREFH=3.2V, F _{ADSMP} =7.8K	±2	±4	±16	LSB
No Missing Code	NMC	VDD=5.0V, AVREFH=3.2V, F _{ADSMP} =7.8K	8	10	12	Bits
ADC enable time	Tast	Ready to start convert after set ADENB = "1"	100	-	-	uS
		Vdd=5.0V	-	0.6*	-	mA
ADC current consumption	I _{ADC}	Vdd=3.0V	-	0.4*	-	mA
		DAC				
Positive Supply Current	Idac	Zero scale. DAB[11:0]=000000000000b	-	10	-	uA
Relative Accuracy	INL				±2	LSB
Differential Nonlinearity	DNL	Monotonic			±2	LSB
Output Leakage Current	Idaleak	Zero scale.			10	nA
Analog Output Current	Idao	Full scale.		2		mA
Output Voltage Setting Time	ts			2		us
DAREF input voltage	Vdref				3.8	V

8-Bit MCU build-in 12-bit ADC + PGIA + Charge-pump Regulator + 144 dots LCD driver

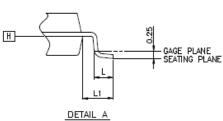
	0.2		ADC + IOIA + Charge-p				
			VBAT= 5V,4MHz/IHRC CPENB=Vdd, DREGENB=Vss	-	1.5	4	mA
	1441	Run Mode	VBAT= 3V,4MHz/IHRC CPENB=Vss, DREGENB=Vss	-	1	3	mA
	ldd1		VBAT= 5V,32768Hz CPENB=Vdd, DREGENB=Vss	-	30	60	uA
Supply Current			VBAT= 3V,32768Hz CPENB=Vss, DREGENB=Vss	-	70	150	uA
	Idd2	Green mode exclude "High clock = 32.768K"	Vdd= 5V, CPENB=Vdd, DREGENB=Vss	-	22	40	uA
			Vdd= 3V, CPENB=Vss, DREGENB=Vss	-	45	70	uA
		Vdd=5V, Sleep mode CPENB=Vdd, DREGENB=Vdd		-	-	2	uA
LVD Detect Voltage	Vdet	Low voltage detect leve	I(LVD_L)	2.0	-	2.3	V
	AVDDR2	VBAT=3V/5V,@1K load	ling	2.45	2.55	2.65	V
Regulator voltage	AVDDR1	VBAT=3V/5V,@1K load	ling	3.75	3.85	3.95	V
	DVDDR	VBAT=3V/5V,@1K load	ling	4.3	4.5	4.7	V
Internal High Oscillator Freq.	Fihrc	Internal Hihg RC (IHRC)	25 <i>℃,</i> Vdd= 5V, Fcpu = 1MHz	15.2	16	16.8	Mhz

18 OTP Programming Pin

18.1 SN8P2839 Series Programming Pin Mapping:


		OTP Programmin	g Pin of SN8P2839 Series				
Chij	o Name	SN8P2839					
l l	Vriter						
Number	Pin	Number	Pin				
1	VDD	92/87/89/90/99/98	VBAT/DVDD/CPENB/DREGENB/AVDDR1/AVDDR2				
2	GND	68/88/100	VSS/VSS/AVSS				
3	CLK (PGCLK)	73	P50				
4	CE						
5	PGM (OTPCLK)	81	P10				
6	OE (SHIFDATA)	72	P51				
7	D1						
8	D0						
9	D3						
10	D2						
11	D5						
12	D4						
13	D7						
14	D6						
15	VDD	92/87/89/90/99/98	VBAT/DVDD/CPENB/DREGENB/AVDDR1				
16	VPP	82	RST				
17	HLS						
18	RST						
19	-						
20	ALSB/PDB	80	P11				

> Disable Analog Regulator when OTP program.



19 PACKAGE INFORMATION

19.1 LQFP100

2 A

0.05 WAX.

NOTES: 1.JEDEC OUTLINE:MS-026 BED

e

2.DATUM PLANE IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

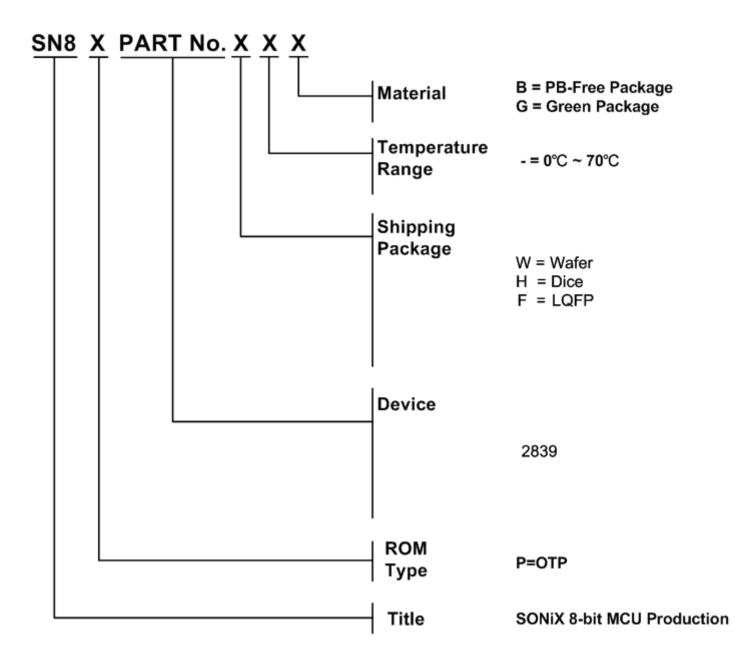
वननननननननननननननननननननन्त्र 🗁

ь

- 3.DIMENSIONS D1 AND E1 D0 NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 D0 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE [F].
- 4.DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION.

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

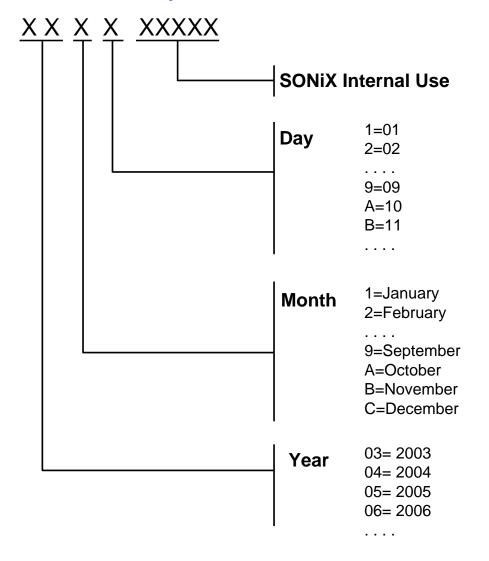
SYMBOLS	MIN.	NOM.	MAX.		
Α			1.60		
A1	0.05		0.15		
A2	1.35	1.40	1.45		
b	0.17	0.20	0.27		
c	0.09	0.127	0.20		
D	1	6.00 BS	C		
D1	1	4.00 BS	C		
E	1	6.00 BS	C		
E1	14.00 BSC				
e	0.50 BSC				
L	0.45	0.60	0.75		
L1		1.00 RE	F		



20.1 Introduction

There are many different types in Sonix 8-bit MCU production line. This note listed the production definition of all 8-bit MCU for order or obtain information. This definition is only for Blank OTP MCU.

20.2 Marking indetification system



20.3 Marking Example

Name	ROM Type	Device	Package	Temperature	Material
SN8P2839FG	OTP	2839	LQFP	0°C ~70°C	Green Package
SN8P2839FB	OTP	2839	LQFP	0°C ~70°C	PB-Free Package

20.4 Datecode system

SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.

Main Office:

Address: 10F-1, No.36, Taiyuan Street, Chupei City, Hsinchu, Taiwan. Tel: 886-3-5600 888 Fax: 886-3-5600 889 **Taipei Office:** Address: 15F-2, NO. 171, Song Ted Road, Taipei, Taiwan R.O.C. Tel: 886-2-2759 1980 Fax: 886-2-2759 8180 **Hong Kong Office:** Address: Flat 3 9/F Energy Plaza 92 Granville Road, Tsimshatsui East Kowloon. Tel: 852-2723 8086

Fax: 852-2723 9179

Technical Support by Email:

Sn8fae@sonix.com.tw